INDEX

FOREWORD 1
PRECAUTIONS 2
SAFETY GUIDE 3

1. NOMENCLATURE AND FUNCTIONS 4
1.1 NOMENCLATURE 4
1.2 KEYPAD 6
2. SYNCHRONIZATION WITH PC7
2.1 INSTALLATION MICROSOFT ACTIVESYNC 7
2.2 CONNECTING TOTAL STATION WITH PC 7
3. KNOWING ABOUT KTS-580 (R) 9
3.1 OPERATING SYSTEM 9
3.2 SETTING YOUR TOTAL STATION 9
3.2.1 Backlight 9
3.2.2 Touch-screen Adjustment 11
3.3 APPROACHES TO INPUT NUMERALAND CHARACTER 12
4. STAR KEY (\star) MODE 16
5. PREPARATION FOR MEASUREMENT 18
5.1 UNPACKING AND STORE OF INSTRUMENT 18
5.2 INSTRUMENT SETUP 18
5.3 BATTERY INFORMATION 21
5.4 REFLECTOR PRISM 22
5.5 MOUNTING AND DISMOUNTING INSTRUMENT FROM TRIBRACH 22
5.6 EYEPIECE ADJUSTMENT AND COLLIMATING OBJECT 23
5.7 VERTICAL AND HORIZONTAL ANGLE TILT CORRECTION. 24
6. BASIC SURVEY 25
6.1 ANGLE MEASUREMENT 26
6.1.1 Horizontal Angle (Right Angle) and Vertical Angle Measurement 26
6.1.2 Switch Horizontal Angle Right/Left 27
6.1.3 Horizontal Angle Reading Setting 28
6.1.4 Vertical Angle Percentage (\%) Mode 30
6.1.5 Repeat Angle Measurement 31
6.2 DISTANCE MEASUREMENT 33
6.2.1 Setting Atmosphere Correction 34
6.2.2 Atmospheric Refraction And Earth Curvature Correction 37
6.2.3 Setting Target Type 38
6.2.4Setting the Prism Constant 39
6.2.5Distance Measurement (Continue Measurement) 40
6.2.6 Distance Measurement (Single/N-Time Measurement) 41
6.2.7Fine/Tracking Measurement Mode 42
6.3 COORDINATE MEASUREMENT 43
6.3.1 Setting Coordinate Values of Occupied Point. 43
6.3.2 Setting the Backsight Point 45
6.3.3 Setting the Instrument Height/ Prism Height 46
6.3.4 Operation of Coordinate Measurement 47
7. APPLICATION PROGRAMS 48
7.1 LAYOUT 48
7.2 REMOTE ELEVATION MEASUREMENT (REM) 49
7.2.1 Inputting Prism Height (h) 50
7.2.2 without Inputtingt Prism Height 51
7.3 MISSING LINE MEASUREMENT (MLM) 53
7.4 LINE MEASUREMENT (LINE) 56
7.5 LEAD MEASUREMENT (STORE NEZ) 59
7.6 OFFSET MEASUREMENT (OFFSET) 62
7.6.1 Angle Offset 62
7.6.2 Distance Offset 64
7.6.3 Column Offset 66
7.6.4 Plane Offset 67
7.7 PARAMETERS SETTING 69
8. START STANDARD SURVEY PROGRAM 71
9. PROJECT 74
9.1 CREATE NEW PROJECT 75
9.2 OPEN PROJECT 76
9.3 DELETE PROJECT. 76
9.4 OPTION 78
9.5 GRID FACTOR 79
10. DATA EXPORT/IMPORT 80
10.1 DATAEXPORT 80
10.2 DATA IMPORT. 82
11. RECORD MEASUREMENT DATA 84
11.1 SETTING OCCUPIED POINT AND BACKSIGHT POINT. 85
11.2 BACKSIGHT OBSERVATION (BS OBS) 96
11.3 FORESIGHT OBSERVATION (FS OBS) 97
11.4 SIDESHOT OBSERVATION (SS OBS) 99
11.4.1 Offset 101
11.4.2 Plane Offset 104
11.4.3 Pt. Line Mode (For Measurement from Point to Line) 106
11.4.4 Control Input 108
11.5 CROSS SECTION SURVEY. 109
12. EDIT DATA 112
12.1 EDITING RAW DATA 113
12.2 COORD. DATA 115
12.2.1 Edit Coord. Data 115
12.2.2 Add coord. data. 117
12.2.3 Delete Coord. Data 118
12.3 FIXED POINT DATA 119
12.4 CODE DATA 119
12.4.1 Create New Layer 119
12.4.2 Edit Layer/Code 121
12.4.3Delete Code 123
12.5 FILL-CUT DATA 123
13. PROGRAM MENU 124
13.1 SET OUT 124
13.1.1 Occupied Point\& Backsight Point 124
13.1.2 Point Set Out 127
13.1.3 String Setout 130
13.2 ROAD DESIGN AND LAYOUT. 132
13.2.1 Define Horizontal Alignment 132
13.2.2 Edit Alignment 138
13.2.3 Define Vertical Alignment 140
13.2.4 Edit Vertical Alignment 141
13.2.5 Alignment Setout 143
13.2.6 Slope Setout 146
13.2.7 Cross Section Setout 149
13.3 COGO 151
13.3.1 Intersection 151
13.3.2 4-Intersection 153
13.3.3 Inverse 154
13.3.4 Area 155
13.3.5 Missing Line Measurement 158
13.3.6 Radiate 160
13.4 TRAVERSE ADJUSTMENT. 161
13.5 BATTER BOARDS 168
13.5.1 Method 1: Batter board using two sides 168
13.5.2 Method 2: Batterboards using one side 171
13.6 TAPE DIMENSIONS 173
14. SYSTEM SETTINGS 176
14.1 SETTING UNIT AND MEASURING PARAMETER 176
14.2 SETTING ATMOSPHERE DATA AND PRISM CONSTANT 179
15. CHECK AND ADJUSTMENT 181
15.1 PLATE VIAL 181
15.2 CIRCULAR VIAL 181
15.3 INCLINATION OF RETICLE 182
15.4 PERPENDICULARITY BETWEEN LINE OF SIGHT AND HORIZONTALAXIS (2C) 183
15.5 VERTICAL INDEX DIFFERENCE COMPENSATION 185
15.6 ADJUSTMENT OF VERTICAL INDEX DIFFERENCE (I ANGLE) AND SETTING VERTICAL INDEX 0 186
15.7 TRANSVERSE AXIS ERROR COMPENSATION ADJUSTMENT. 187
15.8 OPTICALPLUMMET 189
15.9 INSTRUMENT CONSTANT (K) 190
15.10 PARALLEL BETWEEN LINE OF SIGHT AND EMITTING PHOTOELECTRIC AXIS 192
15.11 TRIBRACH LEVELING SCREW 192
15.12 RELATED PARTS FOR REFLECTOR 192
16. ACCESSORIES 194
【APPENDIX-A】 195
1 EXPORT DATA FROM TOTAL STATION 195
1.1 Raw Data Format. 195
1.2 Coordinate Data Format 195
2 IMPORT DATA TO TOTAL STATION 196
2.1 Coordinate Data/Fixed Point Data Format 196
2.2 Cross Section Data Format 196
2.3 Point P Coding Format 197
2.4 Horizontal Line 197
【APPENDIX-B】 CALCULATE ROAD ALIGNMENT. 199
1 ROAD ALIGNMENT ELEMENTS 199
2 CALCULATION ROAD ALIGNMENT ELEMENTS. 201
TECHNICAL SPECIFICATION 206

FOREWORD

Thank you for purchasing Electronic Total Station KTS-580(R) Series.
As a new generation of total station independent R\& D, KTS-580(R) Series realizes the automation and informationization, and takes the advantage of networks, which makes it a computer-like total station.

The Windows CE interface of KTS-580(R) Series is much similar to that of Windows System.You can intuitionally launch data storing, manipulating and exchanging with PC based on Windows platform.
The manual is applicable to: WinCE KTS-580(R) Series Total Station.
1, WinCE KTS-580(R) Series Total Station with infrared EDM.
2, KTS-580(R) Series Total Station with infrared laser EDM (visible laser, no prism)
The content with "客" in the manual applies only to KTS-580(R) Series Total Station. Please read the manual completely before use it.

PRECAUTIONS

1. Do not collimate the objective lens direct to sunlight without a filter.
2. Do not store the instrument in high and low temperature to avoid the sudden or great change of temperature.
3. When the instrument is not in use, place it in the case and avoid shock, dust and humidity.
4. If there is great difference between the temperature in work site and that in store place, you should leave the instrument in the case till it adapts to the temperature of environment.
5. If the instrument has not been used for a long time, you should remove the battery for separate storage. The battery should be charged once a month.
6. When transporting the instrument should be placed in its carrying case, it is recommended that cushioned material should be used around the case for support.
7. For less vibration and better accuracy, the instrument should be set up on a wooden tripod rather than an aluminum tripod.
8. Clean exposed optical parts with degreased cotton or lens tissue only!
9. Clean the instrument surface with a woolen cloth after use. If it gets wet, dry it immediately.
10. Before working, inspect the power, functions and indications of the instrument as well as its initial settings and correction parameters.
11. Unless the user is a maintenance specialist, do not attempt to disassemble the instrument by yourself even if you find the instrument abnormal.

TreSAFETY GUIDE

For infrared laser EDM (visible laser)

Warning:

The total station is equipped with an EDM of a laser grade of 3 R/IIIa. It is verified by the following labels.
Over the vertical tangent screw sticks an indication label "CLASS III LASER PRODUCT". A similar label is sticked on the opposite side.
This product is classified as Class 3 R laser product, which accords to the following standards.
IEC60825-1:2001 "SAFETY OF LASER PRODUCTS".
Class 3R/III a laser product: It is harmful to observe laser beam continuously. User should avoid sighting the laser at the eyes. It can reach 5 times the emitting limit of Class2/II with a wavelength of $400 \mathrm{~mm}-700 \mathrm{~mm}$.

Warning:

Continuously looking straight at the laser beam is harmful.

Prevention:

Do not stare at the laser beam, or point the laser beam to others' eyes. Reflected laser beam is a valid measurement to the instrument.

Warning:

When the laser beam emits on prism, mirror, metal surface, window, etc., it is dangerous to look straight at the reflex.

Prevention:

Do not stare at the object which reflects the laser beam. When the laser is switched on (under EDM mode), do not look at it on the optical path or near the prism. It is only allowed to observe the prism with the telescope of total station.

Warning:

Improper operation on laser instrument of Class 3 R will bring dangers.

1. NOMENCLATURE AND FUNCTIONS

1.1 NOMENCLATURE

1.2 KEYPAD

Functions of the Keys

Key	Nomenclature	Function
POWER	Power Key	To switch power ON/OFF.
$\mathrm{F} 1 \sim \mathrm{~F} 4$	Soft Key	Refers to the function displayed.
$0 \sim 9$	Numeric Key	To input desired numbers.
A ~ 1	Alpha Key	To input alphabets.
Tab	Tab Key	To move cursor rightward or to next character field.
B.S	Backspace	To delete one character leftward when inputting numbers or alphabets.
Ctrl	Ctrl Key	Same as that on a PC.
Shift	Shift Key	Same as that on a PC.
Alt	Alt Key	Same as that on a PC.
Func	Function Key	To launch a specific function defined in the software.
S.P	Space Key	To input a space.
\square	Inputting Panel Key	To display inputting panel.
${ }^{\mathbf{4}}$	Cursor Key	To move the cursor up/down/left/right.
α	Alpha Shifting Key	To shift to alphabet inputting mode.
*	Star Key	To launch several comer functions of the instrument.
ESC	ESC Key	Quit to previous display or previous mode.
ENT	Enter Key	To finish and accept the data input.

2. SYNCHRONIZATION WITH PC

2.1 INSTALLATION MICROSOFT ACTIVESYNC

There is a CD of Microsoft ActiveSync attached in the product package. First, install Microsoft ActiveSync on the personal computer and communicate with PDA. Please follow the steps below.

Before Installing Microsoft ActiveSync

Before installing, read the following words carefully:
\bullet During the installation processing, reboot your computer is required. Therefore, please save your jobs and quit all the applications before installation.

- To install Microsoft ActiveSync, you are supposed to have an USB cable (available in the product package) connect the PDA with the personal computer.

Installation Microsoft ActiveSync

- Put the CD into your disk drive.

Microsoft ActiveSync Installation Guide will be run automatically. If it is not run, double click on the "setup.exe" under the root menu in the disk drive.

- Click "Next" to install Microsoft ActiveSync.

赾 licrosoft ActiveSync 4. 5		x
License Agreement		
Please read the following license agreement carefully.		
MICROSOFT SOFTWARE LICENSE TERMS		
MICROSOFT ACTIVESYNC 4.5		
These license terms are an agreement between Microsoft Corporation (or based on where you live, one of its affiliates) and you. Please read them. They apply to the software named above, which includes the media on which you received it, if any. The terms also apply to any Microsoft		
$\bigcirc 1$ I accept the terms in the license agreement Print		
OI do not accept the terms in the license agreement		
< Back	Next > Cancel	

2.2 CONNECTING TOTAL STATION WITH PC

After Installing Microsoft ActiveSync, restart your PC.
\bullet Plug one end of the USB cable into the USB port beside the keypad of the total station, and another end into one communication port on your PC. For detail, please, refer to your hardware manual.

- Switch total station on. The software will detect the PDA and setup the communication port. When it is connected successfully, the following message will display.

Using "Browse" Function

After the synchronized between the total station and the PC, click "Browse" button to browse al the contents in the portable device (total station), as below.

3 My Computer 1:30 Am 届
You can assign a task to a file like delete or copy.

3. KNOWING ABOUT WINCE KTS-580(R)

Press POWER Key to switch it on, and enter into the welcome interface of Win Total Station.

3.1 OPERATING SYSTEM

Total Station KTS-580(R) Series is based on Windows CE operating system, which similarizes your browse approach with that of Microsoft Windows on a PC. You will find many similar functions like Start, Shortcut Function List and Tools List, etc.

- Note: When the battery is low, an icon "監" will appear on the status bar, as well as a message showing that the battery is low will displayed on the screen.

3.2 SETTING YOUR TOTAL STATION

You can adjust setting of KTS-580(R) to adapt your work style.

3.2.1 Backlight

For save battery, total station KTS-580(R) will judge automatically whether to shut the light or not and will adjust lighteness. You can set as you need.

How to set the time of backlight?

OPERATIONAL STEPS	KEY	DISPLAY
(1) On WindowsCE desktop, click "Start" \rightarrow "Settings".		
(2)Press control panel to enter into main menu. Use stylus to roll the slider bar to find the "Display" icon.	Control panel $+$ Display	
(3) Click "Display" to enter setting of Display Properties		
(4) Click "Backlight", a function screen displays. Choose the time of turning off backlight to save battery. After setting, press [OK] to end.	Backlight $+$ [OK]	

3.2.2 Touch-screen Adjustment

If the touch-screen is not sense to the stylus, you need to adjust the touch-screen. How to adjust touch-screen?

OPERATION STEPS	KEY	DISPLAY
(1) In "Control panel" find "stylus" icon.	control panel $\begin{gathered} + \\ \text { stylus } \end{gathered}$	
(2)Click "stylus"	stylus $+$ Calibration	
(3) Click "Calibration", and then "Recalibrate".	Calibration $+$ Recalibrate	
(4) According to the prompt, use the stylus to click the cross center. Repeat as the cross moves around the screen. Adjust 5 points as this.		afully press and briefly hold stylus on the center of the tarc Repeat as the target moves around the screen. Press the Esc key to cancel.

(5) Press [ENT] to save new	[ENT]	New calibration settings have been measured. setting, Press the Enter keyt accept the new sethings. Press the Esc key to keep the old settings.
Press [OK] to return to control panel.	+	
[OK]		

3.3 APPROACHES TO INPUT NUMERAL AND CHARACTER

For Total Station KTS-580(R) Series, Two kinds of inputting approaches are available. One is using the keyboard, like the keyboard of a mobile phone, with 3 characters on one key. Press it once to display the first characters. Press it twice to display the second one. And press it three times to display the third one. The other approach is using soft keyboard. Press icon [$[0]$ to enter inputting interface. As an example, here we create a folder named "Job-1".
[Example 1: Inputting via soft keyboard]

OPERATIONAL STEPS	KEY	DISPLAY
(1)On desktop of WinCE, press the blank area with the stylus for a while.		
(2) Select "New Folder" on the pull-down menu appeared.		

(3) On desktop of WinCE, a new folder is created. And activate the soft keyboard as seen on the right. $※ 1$)		
(4)Click the [Shift] key on the keyboard via the stylus to shift to capital letter inputting mode, as shown on the right. Click letter [J] to input a characters "J".	$\begin{gathered} {[\text { shift }]} \\ + \\ {[J]} \end{gathered}$	
(5) The system automatically returns to small letter inputting mode. Use the stylus to click characters key [o] and [b] to input "o" and "b".	[o] [b]	
(6) Click [-] to input "-"	[-]	

(7) Click number [1] to input " 1 ".	[1]	
(8) After inputting, click once on the blank area on the desktop to confirm the inputting and close the soft keyboard.		
※1) Input [$\square]$ key to close soft keyboard.		

[Example 2: Input via keyboard]

OPERATIONAL STEPS	KEY	DISPLAY
(1) When a new folder is created on the desktop, a soft keyboard appears automatically. If a soft keyboard is not needed, press [\square] key to close the soft keyboard, and use the numeric keys on the instrument display unit to input characters. ※1)		
(2) Press $[\alpha]$ key to enter into characters inputting mode. To input capital letters, press [SHIFT] key, as seen on the right, and press [4] once to input a capital letter " J '.	$\begin{gathered} {[\alpha]} \\ {[\text { shift] }} \\ {[4]} \end{gathered}$	

(3) Press [SHIIFT] again to return to small letter inputting mode, and press [5] for 5 times to input letter "o", [7] twice to input "b", as shown on the right, $※ 1$)	[shift] [5] [5] [7] [7]	
(4) Press $[\alpha]$ key to return to number inputting mode, and press [-] to input "-", and [1] to input the number " 1 ".	$\begin{gathered} {[\alpha]} \\ {[-]} \\ {[1]} \end{gathered}$	
(5) After inputting, press [ENT] key to accept.	[ENT]	

$※$ 1) Two approaches to soft keyboard inputting: one is pressing [\square] key. Press it again to close. Another approach is using stylus [] to select "Keyboard" on pop-up menu to activate soft keyboard. When soft keyboard is activated, press [
$※ 2$) Under the status of letter inputting mode, each key has defined 3 letters. Every pressing will display a letter. Thus pressing once can display the first letter, the same key twice to display the second letter, and three times to display the third letter.

4. $\operatorname{STAR} \operatorname{KEY}(\star)$ MODE

Press the (\star) to view the instrument settings.
You may modify the settings by pressing the (\star):
TILT: Electric Circular Vial Graphic Display. [F1]
ATMOS: Set the Temperature , Pressure, Atmospheric Correction Value (PPM) and Prism constant value (PSM) .[F2]
TARGET: The light acceptance quantity level (Signal level) is displayed [F3]

1 Electric circular bubble graphic display

Electric circular bubble can be displayed by graphic. This function is good for leveling the instrument when the circular bubble is difficult to check directly.

Rotate the leveling screws while observing the display. After leveling, press [Back] to return the previous mode.

2 Set the Temperature, Pressure, Atmospheric Correction Value (PPM) and Prism constant value (PSM)

Click [atmos] to view the Temperature, Pressure, PPM and PSM. To modify parameter, use stylus moving the cursor to the field and enter new data. Refer to "14.2 SETTING ATMOSPHERE DATA AND PRISM CONSTANT".

3 Set the target type, illumination of cross hair and check the signal intensity.
Click [Target], target type, illumination of cross hair, etc. can be set.

Setting of target type:

KTS-580(R) Series total station can be set as red laser EDM and invisible infrared EDM, and the reflector can be set as with prism, without prism and reflecting sheet. User can set according to the requirement. KTS-580(R) Series total station has invisible infrared EDM function only, the prism used with which has to be matching with the prism constant.

Use stylus to select among the options: reflectorless/sheet/ prism

- Refer to " technical parameters" for the parameter of kinds of reflector.

Setting of illumination of cross hair:

- Move the stylus to adjust the brightness of crosshair.

L: Indicate that the crosshair is dim.
H : Indicate that the crosshair is bright
Move the stylus from left to right to change the brightness of the crosshair from dim to bright.

Setting of signal mode

The reflector return signal intensity was displayed in this mode. It will buzzer when return signal from the prism was received. This function is more convenient for collimation when the target is difficult to find.
The received return signal level is displayed with bar graph as follows.

No light acceptance

Minimum quantity level

Maximum quantity level

5. PREPARATION FOR MEASUREMENT

5.1 UNPACKING AND STORE OF INSTRUMENT

- Unpacking of instrument

Place the case lightly with the cover upward, and unlock the case, take out the instrument.

- Store of instrument

Cover the telescope cap, place the instrument into the case with the vertical clamp screw and circular vial upwards (Objective lens towards tribrach), and slightly tighten the vertical clamp screw and lock the case.

5.2 INSTRUMENT SETUP

Put the instrument on the tripod. Level and center the instrument precisely to ensure the best performance.

Operation Reference:

1 Leveling and Centering the Instrument by plumb bob

1) Set up the tripod
(1) Extend the extension legs to suitable length, make the tripod head parallel to the ground and tighten the screws.
(2) Make the centre of the tripod and the occupied point approximately on the
same plumb line.
(3) Step the tripod to make sure if it is well stationed on the ground.
2) Put the instrument on the tripod

Put the instrument carefully on the tripod head and slide the instrument by loosening the tripod head screw. If the plumb bob is positioned right over the center of the point, slightly tighten the tripod head screw.
3) Roughly leveling the instrument by using the circular vial bubble.
(1) Turn the leveling screw A and B to move the bubble in the circular vial, in which case the bubble is located on a line perpendicular to a line running through the centers of the two leveling screw being adjusted.

(2) Turn the leveling screw C to move the bubble to the center of the circular vial.

4) Precisely leveling by using the plate vial
(1) Rotate the instrument horizontally by loosening the Horizontal Clamp Screw and place the plate vial parallel to the line connecting leveling screw A and B, and then bring the bubble to the center of the plate vial by turning the leveling screws A and B.

(2) Rotate the instrument $90^{\circ}(100 g)$ around its vertical axis and turn the remaining leveling screw or leveling C to center the bubble once more.

(3)Repeat the steps (1)(2) for each 90° (100g) rotation of the instrument and check whether the bubble is correctly centered in all directions.

2 Centering by using the optical plummet

1) Set tripod

Set up tripod to suitable height, ensure equal length of three legs, spread and make tripod head parallel to the ground, and place it right above the measurement station point. Prop up tripod on the ground and fix one leg.
2) Install instrument and collimate the point

Set instrument carefully on tripod, tighten the central connecting screw and adjust optical plummet to make the reticle distinctly. Hold the other two unfixed legs with both hands and adjust position of these two legs through observation of optical plummet. As it approximately aims at the station point, make all three legs fixed on the ground. Adjust three leg screws of the instrument to make optical plummet collimate precisely to the station point.
3) Use circular vial to roughly level the instrument.

Adjust length of three legs of tripod; make the circular vial bubble of the instrument in the middle.
4) Use plate vial to level the instrument accurately.
(1)Rotate the instrument horizontally by loosening the Horizontal Clamp Screw and place the plate vial parallel to the line connecting leveling screw A and B, and then bring the bubble to the center of the plate vial by turning the leveling screws A and B.
(2) Rotate the instrument 90°, make it perpendicular to the connecting line of level screws A and B. Turn level screw C to make the bubble of the plate vial in the middle.
5) Precisely centering and leveling

Through observation of optical plummet, slightly loosen the central connecting screw and move the instrument evenly (Don't rotate the instrument), making the instrument precisely collimating to the station point. Then tighten the central connecting screw and level the instrument precisely again.

Repeat this operation till the instrument collimate precisely to the measurement station point.

5.3 BATTERY INFORMATION

The icon of batter is to show the remaining level of the battery.

Notice:

(1) the battery operating time will vary depending on the environmental conditions such as ambient temperature, charging time, the number of times of charging and discharging etc. It is recommended for safety to charge the battery beforehand or to prepare spare full charged batteries.
(2) the battery power remaining display shows the power level regarding the current measurement mode. The distance measurement mode consumes more power than angle measurement mode, so the power enough for the latter is not sure applicable for the previous one. Pay particular attention to this when switching angle measurement mode to distance measurement mode, because insufficient battery power might lead to interrupted operation.

- before outdoor operation, battery power status should be well checked.
(3) When the measurement mode is changed, the battery power would not immediately show the decrease or increase. The battery power indicating system shows the general status but not the instantaneous change of battery power.

- Battery Recharging Cautions:

B Battery should be recharged only with the charger SC-21 going with the instrument.

Remove the on-board battery from instrument and connect it to battery charger. When the indicator lamp on the battery charger is orange, the recharging process has
begun. When charging is complete (indicator lamp turns green), disconnect the charger from its power source.

-Battery Removal Cautions:

Before removing the battery from the instrument, make sure that the power is turned off. Otherwise, the instrument may be damaged.

-Battery Recharging Cautions:

The charger has built-in circuitry for protection from overcharging. However, do not leave the charger plugged into the power outlet after recharging is completed.

Be sure to recharge the battery at a temperature of $0^{\circ} \sim \pm 45^{\circ} \mathrm{C}$, recharging may be abnormal beyond the specified temperature range .

When the indicator lamp does not light after connecting the battery and charger, either the battery or the charger may be damaged. Please connect professionals for repairing.

-Battery Charging Cautions:

Rechargeable battery can be repeatedly recharged 300 to 500 times. Complete discharge of the battery may shorten its service life.

In order to get the maximum service life, be sure to recharge it at least once a month.

5.4 REFLECTOR PRISM

When measuring distance, a reflector prism needs to be placed at the target place. Reflector systems come with single prism and triple prisms, which can be mounted with tribrach onto a tripod or mounted onto a prism pole. Reflector systems can be self-configured by users according to job.

5.5 MOUNTING AND DISMOUNTING INSTRUMENT FROM TRIBRACH

-Dismounting

If necessary, the instrument (including reflector prisms with the same tribrach) can be dismounted from tribrach. Loosen the tribrach locking screw in the locking knob with a screwdriver. Turn the locking knob about 180° counter-clockwise to disengage anchor jaws, and take off the instrument from tribrach.

-Mounting
Insert three anchor jaws into holes in tribrach and line up the directing stub with the directing slot. Turn the locking knob about 180° clockwise and tighten the locking screw with a screwdriver.

5.6 EYEPIECE ADJUSTMENT AND COLLIMATING OBJECT Method of Collimating Object (for reference)

(1) Sight the Telescope to bright place and rotate the eyepiece tube to make the reticle clear.
(2) Collimate the target point with top of the triangle mark in the coarse collimator. (Keep a certain distance between eye and the coarse collimator).
(3) Make the target image clear with the telescope focusing screw.
is if there is parallax when your eye moves up, down or left, right, it means the diopter of eyepiece lens or focus is not well adjusted and accuracy will be influenced, so you should adjust
the eyepiece tube carefully to eliminate the parallax.

5.7 VERTICAL AND HORIZONTAL ANGLE TILT CORRECTION

When the tilt sensors are activated, automatic correction of vertical and horizontal angle for mislevelment is displayed.

To ensure a precise angle measurement, tilt sensor must be turned on. When a dialog of compensation displays, it indicates that the instrument is out of automatic compensation range ($\pm 4^{\prime}$), and must be leveled manually.

K KTS-580(R) Series compensates both the vertical and horizontal angle readings due to inclination of the standing axis in the X and Y direction.
Example:

OPERATIONAL STEPS	KEY	DISPLAY
		Function Help \quad 四 \times
(1) If the instrument hasn't been leveling, a compensation dialog box will pop up automatically. As shown in the right graph.		
(2)Turn the leveling screw to make the small block dot move into the small circle. When the small black dot is in the small circle, it means the instrument is within the auto tilt compensation scale $\pm 4^{\prime}$. If it is outside the small circle, the instrument needs to be leveled manually.		
(3) To set it to single axis compensation, click [1-axis]; To close compensation, click [OFF]; To return to previous mode, click [Back].		

- the display of vertical and horizontal angle is unstable when instrument is on an unstable stage or is used during a windy day. You can turn off the auto tilt correction function of V / H angle in this case.
- If the Tile Correction is ON (Single Axis or Dual Axis), under the situation that the instrument is not well leveled, you can level the instrument according to the moving direction of the electronic bubble as seen on above.

6. BASIC SURVEY

On desktop of WinCE double click $\frac{18}{w n i s}$
to enter into the menu of Win Total Station, as shown in the following graph:

You can press numeric keys [1] ~[5] to select functions. To quit this screen, press [ESC].
Press numeric key [1] or click " 0 displays as follows.

Description of each function key:

Function keys display at the bottom of the screen, which change with the measure
mode.
The following graph lists each function key in every measure mode.

Mode	Display	Softkey	Function
VAngle	0 Set	1	0 Set horizontal angle.
	HSet	2	Preset a horizontal angle.
	Hold	3	Hold horizontal angle.
	Repeat	4	Repeat horizontal angle measurement.
	V\%	5	Switch between vertical angle and percentage.
	HR/HL	6	Switch horizontal angle right/left
Dist	Mode	1	EDM mode: Fine[s]/ Fine[N]/ Fine [r]/Track
	m/ft	2	Distance unit: meter/Feet/U.S.
	Layout	3	Layout measure mode
	REM	4	Start Remote Elevation Measurement.
	MLM	5	Start Missing Line Measurement.
	Line Ht	6	Start Line Height Measurement.
LCoord	Mode	1	EDM mode: Fine[s]/ Fine[N]/ Fine [r]/Track
	Occ	2	Preset coordinates of occupied point.
	BS	3	Preset coordinates of backsight point.
	Setup	4	Preset instrument height and target height.
	Store	5	Start store function.
	Offset	6	Start Offset measurement. (Angle Offset (1) /Distance Offset (2)/Column Offset (3)/Plane Offset (4)).

6.1 ANGLE MEASUREMENT

6.1.1 Horizontal Angle (Right Angle) and Vertical Angle Measurement
 Make sure the mode is Angle measurement.

[^0]
6.1.2 Switch Horizontal Angle Right/Left

Make sure the mode is Angle measurement.

$※ 1)$ Every time click [HR/HL] key, HR/HL is shifted in order.

6.1.3 Horizontal Angle Reading Setting

1) Setting by holding the angle

Make sure the mode is Angle measurement.

OPERATIONAL STEPS	KEY	DISPLAY				
(1)Use horizontal clamp screw and horizontal tangent screw to set the required horizontal angle.		Angle Measurement				\times
		VA(V): HA(HR):		$6^{\prime} 17^{\prime \prime}$	Parame PPM: 0 PSM: -30 Dist Unit: EDM Mod Tilt: 2 -Axis	Mers Meter
					\checkmark Angle	1 Dist
		OSet	HSet	Hold	$\angle \mathrm{Coord}$	EPara.
		Repeat	V/\%	HR/HL		

2) Setting a Horizontal Angle from the keys

Make sure the mode is Angle measurement.

OPERATIONAL STEPS	KEY	DISPLAY				
(1)Collimate the target.		Angle Measurement				
		va(v): HA(HR):	$\frac{10^{\circ} 04^{\prime} 35^{\prime \prime}}{10^{\circ} 46^{\prime} 02^{\prime \prime}}$		$\begin{aligned} & \text { Parameters } \\ & \text { PPM: } 0 \\ & \text { PSM: -30 } \\ & \text { Dist Unit:: Meter } \\ & \text { EDM Mode:Fine[s] } \\ & \text { Tilt:2-Axis } \end{aligned}$	
					\checkmark Angle	4 Dist
		OSet	HSet	Hold	KCoord	Prara.
		Repeat	v/\%	HR/HL		

※1) You can press [\square to open inputting panel, click the numbers to input,see "3.3 APPROACHES TO INPUTTING NUMBERS AND LETTERS".
$※ 2)$ To revise wrong value, use stylus or press [/]/ [】 moving the cursor to right of the number need to delete. Click [-] on the panel or press [B.S.] to delete wrong value and input correct one.
$※ 3$) With wrong input value (for example 70^{\prime}), Setting failed, press [ENT], the system doesn't respond, input again from step (3).

6.1.4 Vertical Angle Percentage (\%) Mode

Make sure the mode is Angle measurement.
Example:

OPERATIONAL STEPS	KEY	DISPLAY				
(1) Make sure the mode is Angle measurement.		Angle Measurement				x
		VA(V): $\mathrm{HA}(\mathrm{HR})$:	$\begin{array}{\|c\|} \hline 87 \\ \hline 152 \\ \hline \end{array}$	$0^{\prime 2} 20^{\prime \prime}$	$\begin{aligned} & \text { Parameters- } \\ & \text { PPM: } \\ & \text { PSM: - } \\ & \text { PS } \\ & \text { Dist Unit: Meter } \\ & \text { EDM Mode:Fine[5] } \\ & \text { Tilt:2-Axis } \\ & \hline \end{aligned}$	
					\checkmark Angle	1 Dist
		OSet	HSet	Hold		
		Repeat	V/\%	HR/HL	Coord	Para.

(2)Click [V/\%]. ※1)	[V\%]	Angle Measurement				
		v\%: HA(HR):	$\begin{gathered} \hline 3.60 \% \\ \hline 152^{\circ} 50^{\prime} 21^{\prime \prime} \end{gathered}$			
					\checkmark Angle	4 Dist
		OSet	HSet	Hold	Kcoord	
		Repeat	V/\%	HR/HL	Kcoord	Para.

※1) Every time Click [V/\%], the display mode switches accordingly.

6.1.5 Repeat Angle Measurement

This program is used to accumulate repeated angle measurement, displaying the sum of and average value of all observed angles. It records the observation times at the same time.

Example:

6.2 DISTANCE MEASUREMENT

In basic surveying screen, click [Dist] to enter into distance measurement.

NOTE:

Measurements to strongly reflecting targets such as to traffic lights in infrared mode
should be avoided．The measured distances may be wrong or inaccurate．
When the［MEASURE］is triggered，the EDM measures the object which is in the beam path at that moment．
If e．g．people，cars，animals，swaying branches，etc．cross the laser beam while a measurement is being taken，a fraction of the laser beam is reflected and may lead to incorrect distance values．
皃Avoid interrupting the measuring beam while taking reflectorless measurements or measurements using reflective foils．

宴 Reflectorless EDM

－Ensure that the laser beams cannot be reflected by any object nearby with high reflectivity．
－When a distance measurement is triggered，the EDM measures to the object which is in the beam path at that moment．In case of temporary obstruction（e．g．a passing vehicle，heavy rain，snow，frog，etc．），the EDM may measure to the obstruction．
－When measuring longer distance，any divergence of the red laser beam from the line of sight might lead to less accurate measurements．This is because the laser beam might not be reflected from the point at which the crosshairs are pointing． Therefore，it is recommended to verify that the R－laser is well collimated with the telescope line of sight．
－Do not collimate the same target with the 2 total stations simultaneously．
宴 Accurate measurements to prisms should be made with the standard program （infrared mode）．
惫Red Laser Distance Measurement Cooperated with Reflective Foils．
The visible red laser beam can also be used to measure to reflective foils．To guarantee the accuracy the red laser beam must be perpendicular to the reflector foil and it must be well adjusted（refer to＂REFLECTORLESS EDM＂）．
Make sure the additive constant belongs to the selected target（reflector）．

6．2．1 Setting Atmosphere Correction

Distance measurement is influenced directly by the atmospheric conditions of the air in which distance measurement are taken．

In order to take into consideration these influences distance measurements are corrected by using atmospheric correction parameters．

Temperature：Air temperature at instrument location．
Pressure：Air pressure at instrument location．
Atmos PPM：Calculated and indicated atmospheric PPM．

6.2.1.1 Calculation of Atmospheric Correction

The value of Atmospheric Correction can be influnced by air pressure, air temperature and the height. The calculating formula is as follows: (calculating unit: meter)

$$
\begin{aligned}
\text { PPM }= & 273.8-0.2900 \times \text { Pressure Value }(\mathrm{hPa}) \\
& 1+0.00366 \times \text { Temperature value }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

If the pressure unit adopted is mmHg : make conversion with:

$$
1 \mathrm{hPa}=0.75 \mathrm{mmHg} .
$$

The standard atmospheric condition of KTS-580(R) Series (e.g. the atmospheric condition under which the atmospheric correction value of the instrument is zero) :
Pressure: 1013 hPa
Temperature: $20^{\circ} \mathrm{C}$

If regardless of atmospheric correction, please set PPM value as 0 .

OPERATIONAL STEPS	OPERATION	DISPLAY		
(1)In the menu of total station, click "System Setup" and then click "Atmospheric Parameters".	[System Setup] [Atmospheric paramaters]	System Set 0 OK \times		
		Measurement Set Atmospheric Parameters Con I/		
		$\left[\begin{array}{l} \text { Input } \\ \text { Temperature } \\ 20 \\ \\ \\ \\ \\ \mathrm{C} \end{array}\right.$		
		Pressure 1013 hPa		
		PPM 0		
		Save		
(2) Current Atmospheric Parameters display on the screen. use stylus and input the new data. For instance, set the temperature as $26^{\circ} \mathrm{C}$	Input Temperature	System Set 0 OK\|×		
		Measurement Set Atmospheric Parameters Con $1 / 1 /$		
		Input Temperature 26		
		Pressure 1013 hPa		
		PPM 0 ppm		
		PSM -30 mm		
		Save		

6.2.1.2, Input Atmospheric Correction Value directly

Test the temperature and air pressure out,and get the Atmospheric Correction Value(PPM) from the formula of Atmospheric Correction.

OPERATIONAL STEPS	OPERATION	DISPLAY
(1) In the menu of total station, click "System Setup" and then click "Atmospheric Parameters"	"System Setup" + "Atmospheric Parameters	System Set 1
		Measurement Set Atmospheric Parameters Con d/
		Save
(2)Delete the old PPM and input the new one $\ldots 1$)	Input PPM Value	System Set 10 OK \times
		Measurement Set Atmospheric Parameters Con / /
		$\left[\begin{array}{rl}\text { Input } & \\ \text { Temperature } & \boxed{26} \\ \text { Pressure } & \boxed{1013} \\ \text { PPM } & \boxed{3} \\ & \mathrm{cPa} \\ \text { PSM } & \boxed{-30}\end{array}\right.$
		Save
(3)Click [Save] to save the value.	[Save]	System Set $100 \times 1 \times$
		Measurement Set Atmospheric Parameters Con 1 /
		Atmospheric Parameters OK \times O (i) Atmospheric parameter settings have been saved!
		Save
※1)The inputting scope of Atmospherie parameters : $-100 \sim+100$ PPM(step length : 1PPM)		

Atmospheric Correction value also can be set in star key (\star) model.

6.2.2 Atmospheric Refraction And Earth Curvature Correction

The instrument will automatically correct the effect of atmosphere refraction and the earth curvature when calculating the horizontal distance and the height differences.

The correction for atmosphere refraction and the earth curvature are done by the formulas as follows:

Corrected Horizontal Distance:

$D=S^{*}\left[\cos \alpha+\sin \alpha{ }^{*} S * \cos \alpha(K-2) / 2 R e\right]$

Corrected Height Differentia:

$H=S^{*}[\sin \alpha+\cos \alpha * S * \cos \alpha(1-K) / 2 R e]$

If the correction of atmosphere refraction and the earth curvature is neglected, the calculation formula of horizontal distance and the height differentia are:
$D=S \cdot \cos \alpha$
$\mathrm{H}=\mathrm{S} \cdot \sin \alpha$
In formula: $\quad \mathrm{K}=0.14$....................... Atmosphere Refraction Modulus
Re=6370 km The Earth Curvature Radius
α (or β)The Vertical Angle Calculated From Horizontal Plane (Vertical Angle)

S Oblique Distance
NOTE: The atmosphere refraction modulus of this instrument has been set as: $\mathrm{K}=0.14$.it als can be set as: $\mathrm{K}=0.2$, or be set shut (0 VALUE).(refer to "****"SYSTEM SETTINGS)

6.2.3 Setting Target Type

KTS-580(R) Series Total Stations can set options of Red Laser(RL) EDM and Invisible Laser(IL) EDM, as well as reflector with prism, non-prism, and reflective foil. User can set them according to the requirements of the job.WinCE Series Total Stations are only equipped with laser EDM function, which requires that the prism is in accordance with the prism constant.
You can set Target Type in star key (\star) model.

6.2.4Setting the Prism Constant

Since the constants of prisms manufactured by different companies are different, the corresponding prism constant must be set. Once the prism constant is set, it would be kept even if the machine is turned off.

OPERATIONAL STEPS	OPERATION	DISPLAY
(1)In the menu of total station, click "System Setup"and then click "Atmospheric Parameters"		System Set 0K\| \times
		Measurement Set Atmospheric Parameters Con /v $^{\text {c }}$
	"System Setup"	Input Temperature 26
		Pressure 1013 hPa
	"Atmospheric	PPM 3 pmm
	Parameters"	PSM O mm
		Save

.You also can set Prism Constant in star key (\star) model.

6.2.5Distance Measurement (Continue Measurement)

Make sure the mode is Angle measurement.

OPERATIONAL STEPS	KEY	DISPLAY				
(1)Sight the center of prism.	Sight	Angle Measurement				
		va(v): HA(HR):	$\begin{aligned} & 55^{\circ} 51^{\prime} 51^{\prime \prime} \\ & \hline 195^{\circ} 08^{\prime} 05^{\prime \prime} \end{aligned}$		$\left\{\begin{array}{l}\text { Parameters } \\ \text { PPMM } 0 \\ \text { PSM: -30 } \\ \text { Dist Unitit. Meter } \\ \text { EDMM Mode:Fine[}[5] \\ \text { Tilt:2-Axis }\end{array}\right.$	
					\checkmark Angle	4 Dist
		OSet	HSet	Hold	< Coord	Para.
		Repeat	V/\%	HR/HL		

※1) To change measuring mode, click [Mode], set as step (3).
$※ 2)$ The result is shown with buzzer sound.
$※ 3)$ Measurement may repeat automatically if the result is affected by atmospheric refraction etc.

6.2.6 Distance Measurement (Single/N-Time Measurement)

When the number of times for measurement is preset, the instrument measures the distance according to the specified number or times. The average result will be displayed.
When presetting the number of times as 1, it does not display the average distance because it is just single measurement; Single measurement is default from leaving factory.

1) Example: Setting the number of times

6.2.7Fine/Tracking Measurement Mode

Fine mode: This is the normal distance measurement mode.
Tracking mode: This mode measures in a shorter time than in fine mode. Use this mode for stake-out measurement. It is very useful for tracing the moving object or carrying out engineering stake-out job.

Example:

6.3 COORDINATE MEASUREMENT

6.3.1 Setting Coordinate Values of Occupied Point

Set the occupied point Coordinate according to coordinate origin, and the instrument automatically converts and displays the prism point Coordinate based on the origin and occupied point.

Example:

OPERATIONAL STEPS	KEY	DISPLAY				
(1) Click [Coord] to enter into coordinate measurement.	[Coord]	Coord Measurement				
		va(v): HA(HR): North (N): East (E): Zenith(z):	$8^{87}{ }^{\circ} 08^{\prime} 37^{\prime \prime}$		$\|$Parameters PPM: PSM: - 30 Dist Unit: Meter EDM Mode:Fine[s] Tilt:2-Axis	
			16653'32"			
			>>>------			
					\checkmark Angle	4 Dist
		Mode	Occ	BS	\angle coord	$9^{\text {Para. }}$
		Setup	Store	offset		
(2)Click [Occ] .	[Occ]	Coord Measurement x				
		HA $($ (HR $):$ North $(\mathbb{N}):$ $\left[\left.\begin{array}{c}\text { Input } \\ N\end{array} \right\rvert\,\right.$				$\left.\right\|_{\text {leter }} ^{\text {me:Fine[s] }}$
		North (N): East (E):	E 0			
		$\begin{aligned} & \text { East (E): } \\ & \text { Zenith(z): } \end{aligned}$	z 0			\triangle Dist
			Enter		Cancel	Tpara.
		Setup	Store		KCoord	
(3) Input coordinate of occupied point, after inputting one item, click [Enter] to move to the next item.	[Enter]	Coord Measurement				
						\times
		HA(HR): North (N):	$\left[\begin{array}{l} \text { Input } \\ N \\ \\ 100 \\ \hline \end{array}\right.$			
		$\begin{aligned} & \text { East (E): } \\ & \text { Zenith(z): } \end{aligned}$				4 Dist
			$\begin{array}{l\|l} \mathrm{E} & \mid 100 \\ z & 100 \end{array}$			
		Mode	Enter		Cancel	TPara.
		Setup	Store	offset	KCoord	

(4)After all inputting, click [Enter] to return to coordinate measurement screen.	[Enter]	Coord Measurement			$\quad \times 1$ Parameters PPM: $\quad 0$ PSM: -30 Dist Unit: Meter EDMM Mode:Fine[S] Tilt:2-Axis	
		VA(V): HA(HR): North (N): East (E): Zenith(Z):	$\begin{array}{\|c} \hline 87^{\circ} 08^{\prime} 37^{\prime \prime} \\ \hline 166^{\circ} 53^{\prime} 32^{\prime \prime} \end{array}$			
				706		
				. 068		
				115	\checkmark Angle	1 Dist
		Mode	Occ	BS		
		Setup	Store	Offset	d	a.

6.3.2 Setting the Backsight Point

Example:

6.3.3 Setting the Instrument Height/ Prism Height

Measure the Coordinate by entering the instrument height / prism height, Coordinate of unknown point will be measured directly.

OPERATIONAL STEPS	KEY	DISPLAY				
(1)Click [Setup] to enter Set Inst.Ht \& R.Ht function.	[Setup]	Coord Measurement			\times	
			106³6'55"		$\begin{aligned} & \text { Parameters- } \\ & \text { PPM: } \\ & \text { PSM: -30 } \\ & \text { Pist Unit: Meter } \\ & \text { EDM Mode:Fine[5] } \\ & \text { Tilt:2-Axis } \\ & \hline \end{aligned}$	
			22459'59"			
			99.819			
			99.819		\checkmark Angle	\triangle Dist
			9.935			
		Mode	Occ	BS	LCoord	© Para.
		Setup	Store	Offset		
(2)Input instrument height, and target height, After inputting one item, click [Enter] to move to the next item.	Input instrument height, and target height.	Coord Measurement				\times
		Setup	Store	Offset	$\measuredangle \text { coord }$	فुPara.

		Coord Mea	uremer			\times
		VA(V):	106	36'55'	$\left[\begin{array}{l} \text { Paramete } \\ \text { PPM: } \end{array}\right.$	
		HA(HR):	225	00'00"	Dist Unit:	Meter
(3)After inputting all data, Click	[Enter]	North (N):		819	$\begin{aligned} & \text { EDM Mode: } \\ & \text { Tilt:2-Axis } \end{aligned}$	e:Fine[5]
[Enter] to return to Coordinate		East (E):		819		
Measurement Screen.		Zenith(z):		935	\checkmark Angle	1 Dist
		Mode	Occ	BS		
		Setup	Store	Offset	coord	a.

6.3.4 Operation of Coordinate Measurement

Measure the Coordinate by entering coordinate of occupied point, backsight azimuth, the instrument height and prism height, coordinate of unknown point will be measured directly.

- To set coordinate value of occupied point, see Section "6.3.1 Setting Coordinate Values of Occupied Point".
- To set the instrument height and prism height, see Section "6.3.3 Setting of the Instrument Height/Prism Height".
- The Coordinate of the unknown point are calculated as shown below and displays:

Coordinate of occupied point: (NO, EO, ZO)
Coordinate of the centre of prism ,originated from the centre point of the instrument: (n, e, z)

Coordinate of unknown point : (N1, E1, Z1)
$\mathrm{N} 1=\mathrm{N} 0+\mathrm{n}$
E1 $=\mathrm{E} 0+\mathrm{e}$
Z1 = Z0 + Inst. Ht + z -Prism .h

Example:

$※ 1)$ In case the coordinate of occupied point is not entered, then the coordinate of occupied point set last time would be used. The instrument height and the prism height will be the value you set last time. $※ 2)$ Refer to Section "6.1.3 Horizontal Angle Reading Setting" or "6.3.2 Setting the Backsight Point". ※3)Click[Mode], the mode (SINGLE/N-TIME/REPEAT/TRACKING) changes .
$※ 4)$ To return to the normal angle or distance measuring mode, click [Angle]/ [Dist].

7. APPLICATION PROGRAMS

7.1 LAYOUT

The difference between the measured distance and the preset distance is displayed. The displayed value $=$ Measured distance - Standard (Preset) distance

- This function enables the stake-out of Horizontal Distance (HD), Vertical Difference (VD) or Slope Distance (SD) .
Example:

OPERATIONAL STEPS	KEY	DISPLAY				
(1) Under the mode of Distance Measurement, click [Layout].	[Layout]	Distance Measurement \times				
		VA(V): HA(HR): SD: HD: VD:			$\left\lvert\, \begin{aligned} & \text { Parameters } \\ & \text { PPM: } \\ & \text { PSM }\end{aligned}\right.$	
			79008'57"		PSM: -30	
			SD: 0			
			Enter		Cancel	11 Dist
			1	-		
		Mode	m/ft	Layout	\angle Coord	TPara.
		REM	MLM	Line		
(2) Select the distance measurement mode (SD/HD/VD) to be laid out. After inputting the data to be laid out, click [Enter] ※1)		Distance Measurement				\times
		VA(V):	$79^{\circ} 08^{\prime \prime} 56^{\prime \prime}$		$\left[\begin{array}{l}\text { Parameters } \\ \text { PPM: } 0 \\ \hline\end{array}\right.$	
		$H A(H R):$	Layout \times			Meter :Fine[5]
			SD: 2.23			
		HD:	Enter			1 Dist
		Enter			Cancel	
		Mode	m/ft	Layout	KCoord	TPara.
		REM	MLM	Line		
(3) Start setting out.		Distance Measurement \times				
		VA(V):	$79^{\circ} 07^{\prime} 54^{\prime \prime}$		$\left[\begin{array}{l}\text { Parameters } \\ \text { PPM: } \\ \\ \hline\end{array}\right.$	
		HA,(HR):	266035'41"		PSM: -30 Dist Unit: Meter	
		dSD:	2.789		EDM Mode:Fine[S] Tilt:2-Axis	
		HD:	4.932		\checkmark Angle	\triangle Dist
		VD:	0.947			
		Mode	m/ft	Layout	LCoord	ThPara.
		REM	MLM	Line		

$※ 1)$ A dialog box prompts to enter slope distance you want to layout, after entering click[Enter] to layout SD. To layout horizontal distance, input 0 in SD dialog box. Click [Enter], the HD box will prompt. After entering click [Enter] to layout HD. To layout height difference, input 0 in SD and HD box, and then the dialog box of VD to be staked out will prompt.

7.2 REMOTE ELEVATION MEASUREMENT (REM)

The Remote Elevation program calculates the vertical distance (height) of a remote object relatively to a prism and its height from a ground point (without a prism height). When using a prism height, the remote elevation measurement will start from the prism (reference point). If no prism height is used, the measurement will start from any reference point in which the vertical angle is established. In both procedures, the reference point should be perpendicular to the remote object.

7.2.1 Inputting Prism Height (h)

Example: (h=1.5m)

(4) Sight the prism center P. (5)Click [Measure] to start measure. (6)The HD betweent instrument and prism is displayed.	Sight the prism [Measure]		
			$\|$Parameters PPM: 0 PSM: - 0 Dist Unit: Meter EDM Mode:Fine[R] EIt: M-Axis
			Continue
			Exit
(7)Click [Continue], then the prism position is entered.	[Continue]		x
			Parameters \qquad PSM: Dist Unit: Meter EDM Mode:Fine[R] Tilt:2-Axis
			Measure
			Continue
			Exit
(8) Sight target K. The Vertical Distance (HD) is displayed. $※ 1$)	Sight K		
			Measure
			Continue
			Exit
※1) To quit REM, click [Exit].			

7.2.2 without Inputtingt Prism Height

Example:

OPERATIONAL STEPS	KEY	DISPLAY	
(1)Use stylus to click "Without R.Ht"	Without R.Ht		
			Exit
(2)Sight prism center P . (3)Click [Measure] to start survey. (4)The HD between instrument and prism is displayed.	Sight prism [Measure]	REM	\times
			Measure
			Continue
			Exit
(5)Click [Continue], The G point position is entered.	[Continue]	REM	\times
			$\left[\begin{array}{l}\text { Parameters } \\ \text { PPM: } 0 \\ \text { PSM: - 30 } \\ \text { Dist Unit: Meter } \\ \text { EDM Mode:Fine[R] } \\ \text { Tilt:2-Axis }\end{array}\right.$
			Measure
			Continue
			Exit
(6)Click [Continue].	[Continue]		
			Measure
			Continue
			Exit

(7) Sight target K. The Vertical Distance (VD) is displayed. $※ 1$)	Sight target	REM \times	
			Parameters PPM: PSM: - 30 Dist Dit: Meter EDM Mode:Fine[R] Tilt:2-Axis
		$\left[\begin{array}{ll} \text { Result } & \\ \text { vD: } & 3.114 \end{array}\right.$	Measure
			Continue
			Exit
※1) To quit REM, click [Exit].			

7.3 MISSING LINE MEASUREMENT (MLM)

The Missing Line Measurement program computes the horizontal distance (dHD), slope distance (dSD) and vertical difference (dVD).
This program can accomplish this in two ways:

1. (A-B, A-C): Measurement $A-B$, A-C, A-D
2. ($A-B, B-C$): Measurement $A-B$, B-C, C-D

[EXAMPLE] 1. (A-B, A-C)

(5)Sight prism B, Click [Measure]].	[Measure]	MLM	
			Parameters PPM: PSM: - 30 Dist Unit: Meter EDM Mode:Fine[R] Tilt:2-Axis
		2.09	Measure
			Continue
			Exit
(6)Click [Continue], The horizontal distance (dHD) height differentia (dVD) and slope distance (dSD) between prism A and B display. $※ 1$)	[Continue]	MLM	
		$\begin{array}{ll} \mathrm{Option} & \mathrm{O}(\mathrm{~A}-\mathrm{B}, \mathrm{~A}-\mathrm{C}) \\ \hline \end{array}$	Parameters \qquad PPM: 0 PSM: -30 Dist Unit: Meter EDM Mode:Fine[R] Tilt:2-Axis
		Step 11 HD(1): 	
		${ }^{\text {Step 2 } 2} \mathrm{HD}(2) \mathrm{C} \quad 2.091$	
		$\begin{aligned} & \text { Result } \\ & \text { dHD:0.513 } \end{aligned}$	Measure
			Continue
		dSD:0.515	Exit
(7) To measure distance between point A and C , sight prism C and then click [Meas. After measuring, horizontal distance between the instrument and prism C displays.	[Measure]	MLM	\times
		Option	Parameters PPM: $\quad$$x$ PSM: -30 PIst Unit: Meter EDM Mode:Fine[R] Tilt:2-Axis
		$\left[\begin{array}{l}\text { Step 11 } \\ H D(1): ~ \\ 1.579\end{array}\right.$	
		$\int_{\text {HD(2): }}^{\text {Step } 2} 101.783$	
			Continue
			Exit
(8)Click [Continue], the horizontal distance (dHD) height differentia (dVD) and slope distance (dSD) between prism A and C display.	[Continue]	MLM	
		$\left[\begin{array}{ll}\text { Option } & \\ \bigcirc(A-B, A-C) & \bigcirc(A-B, B-C)\end{array}\right.$	Parameters PPM: 0 PSM: -30 Dist Unit: Meter EDM Mode:Fine[R] Tilt:2-Axis
		${ }^{\text {Step } 22} \mathrm{HD}(2): \quad 1.782$	
		Result \qquad dHD:0.620	Measure
			Continue
		$\begin{aligned} & \text { dVD:-0.024 } \\ & \text { dSD:0.620 } \end{aligned}$	Exit
$※$) Click [Exit] to return to main menu.			

- The observation procedure of $(A-B, B-C)$ is same as $(A-B, \quad A-C)$.

7.4 LINE MEASUREMENT (LINE)

The Line Measurement program allows the user to measure the height of an inaccessible object above a point. Both the inaccessible object and the point are located along an established base line. Two prisms, A and B, are set up apart from each other below the object to establish the base line. The horizontal distance is measured and set in the instrument for both prism A and B. The screen then shows the vertical distance from prism A and B, the horizontal distance from the instrument to prism B, and the distance along the base line and the screen will display the vertical distance from prism A to that point, the horizontal distance for that point. Additionally, the vertical distance between two points on the base line, Point G and L in the diagram can be measured.

Example: Input of prism height

OPERATIONAL STEPS	KEY	DISPLAY				
(1)In Distance Measurement, click [Line Ht] to enter into line height measurement function		Distance Measurement				\times
		VA(V):	231042'52'		Parameters	
		HA(HR):	40% $39^{\prime} 05^{\prime \prime}$		Dist Unit: Meter EDM Mode:Fine[5] Tilt:2-Axis	
	[Line Ht]	SD:		------		
		HD:				
		VD:			e	t
		Mode	m / ft	Layout		
		REM	MLM	Line	d	a.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{6}{*}{(6) After finishing measurement, click [Continue].} \& \multirow{6}{*}{[Continue]} \& \multicolumn{3}{|l|}{Line}

\hline \& \& Option

\qquad \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Parameters
PPM:
PSM: 0
PSM -
Dist Unit: Meter
EDM Mode:Fine[R]
Tilt:2-Axis}}

\hline \& \& \& \&

\hline \& \& PB: 2.072 \& \&

\hline \& \&	VD	
VD:	2.314	
HD:	2.967	
Off:	0.742	\& \&

\hline \& \& \& Continue \& Set

\hline \multirow[b]{2}{*}{(7) Sight line point L, Measured} \& \& Line \& \multicolumn{2}{|l|}{\times}

\hline \& \& Option \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{$$
\begin{aligned}
& \text { Parameters } \\
& \text { PPM: } 0 \\
& \text { PPM: -30 } \\
& \text { PSM } \\
& \text { Dist Unit: Meter } \\
& \text { EDM Mode:Fine[R] } \\
& \text { Tilt:2-Axis }
\end{aligned}
$$}}

\hline data to the line point L is diplayed. \& \& \multirow[t]{2}{*}{| HD | |
| :---: | :---: |
| | 1.781 |
| | 1.353 |
| $\mathrm{~PB}:$ | 1. |
| | |} \& \&

\hline VD : Vertical distance \& \& \& \&

\hline HD: Horizontal distance from the instrument to L \& \& | | |
| :--- | ---: |
| VD | |
| VD: | -0.072 |
| HD: | 0.289 |
| Off: | 1.492 | \& \&

\hline \& \& \& Continue \& Set

\hline \multirow[t]{6}{*}{| (8)Click [Continue]. |
| :--- |
| This function is used when measuring the line height from the groud OPERATIONAL STEPS: |
| - Sight the point on the line before clicking [Next]. |
| - Don't move the horizontal tangent screw by setting groud point G |} \& \multirow{6}{*}{[Continue]} \& Line \& \multicolumn{2}{|l|}{\times}

\hline \& \& Option O With R.H. O Without \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| ```Parameters``` \qquad |
| :--- |
| ```PPM: 0 \\ PSM: - 30 \\ Dist Unit: Meter EDM Mode:Fine[R] Tilt:2-Axis``` |}}

\hline \& \& \multirow[t]{2}{*}{| HD | |
| :---: | :---: |
| | 1.781 |
| | 1.353 |
| PB: | 1.7 |} \& \&

\hline \& \& \& \&

\hline \& \& | VD | |
| :--- | :--- |
| VD: | -0.035 |
| HD: | 0.310 |
| Off: | 1.472 | \& \multicolumn{2}{|l|}{Tilt:2-Axis}

\hline \& \& $$
V: \quad 73^{\circ} 18^{\prime} 48^{\prime \prime}
$$ \& Continue \& Set

\hline \multirow{6}{*}{(9)Rotate the vertical tangent screw and sight groud point G.} \& \multirow{6}{*}{Sight G} \& Line \& \multicolumn{2}{|l|}{\times}

\hline \& \& Option- With R.HO Without \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| Parameters |
| :--- |
| PPM: 0 |
| PSM: -30 |
| Dist Unit: Meter |
| EDM Mode:Fine[R] |
| Tilt: 2 -Axis |}}

\hline \& \& \multirow[t]{2}{*}{| HD | |
| :---: | :---: |
| | 1.781 |
| | 1.353 |
| | |} \& \&

\hline \& \& \& \&

\hline \& \& | | |
| :--- | :--- |
| VD | |
| VD: | 0.246 |
| HD: | 0.521 |
| Off: | 1.260 | \& \multicolumn{2}{|l|}{}

\hline \& \& $\left[\begin{array}{l}\text { Ground Pt } \\ V: \longdiv { 1 1 8 ^ { \circ } 3 3 ^ { \prime } 3 8 ^ { \prime \prime } } \\ \hline\end{array}\right.$ \& Continue \& Set

\hline
\end{tabular}

(10)Click [Next], line height LH (LH) and horizontal distance (Off) are displayed $※ 1) \sim ※ 3$)	[Continue]	Line	\times
		$\text { Option } \widehat{O} \text { with R.Ht } \bigcirc \text { without }$	$\left[\begin{array}{l} \text { Parameters } \\ \text { PPM: } 0 \end{array}\right.$
		HD $\mathrm{PA}:$ 1.781 1.353	PSM: -30 Dist Unit: Meter
		PB: 1.353	In
		VD VD: 0.246 HD: 0.521 Off: 1.260	$\begin{array}{ll} & \\ \hline \text { Line Height } & \\ \text { LH: } & 1.650 \\ \text { Off: } & 1.260 \end{array}$
		[Ground Pt-	VD Set

※1) To finish the measurement, press [ESC].
※2) To return to operation step (7) click [VD].
$※ 3$) The NEXT key is used when the groud point G is not clear and you would like to check another ground point G on the same vertical line.

7.5 LEAD MEASUREMENT (STORE NEZ)

In this program the coordinate for the next point is stored in memory after the measurement is completed and accepted. The feature allows the user to occupy the next move-up point and use the previous occupied point for the backsight orientation. When occupying the next point and backsighting the original occupied point, the instrument will display the reverse angle for backsight orientation. If the occupied coordinate is not preset, zero $(0,0,0)$ or the previous preset coordinate will be used for this program.

- Set the coordinate value of instrument point P0 and set the direction angle from P0 toward the known point A.

Example:

7.6 OFFSET MEASUREMENT (OFFSET)

There are four offset measurement modes in the Offset Measurement.
1.Angle offset
2.Distance offset
3.Plane offset
4.Column offset

7.6.1 Angle Offset

This mode is useful when it is difficult to set up the prism directly, for example at the centre of a tree. Place the prism at the same horizontal distance from the instrument as that of point AO to measure .To measure the Coordinate of the centre position, operate the offset measurement after setting the instrument height/prism height.
\bullet When measuring coordinates of ground point A1: Set the instrument height/prism height.

- When measuring coordinates of ground point A0: Set the instrument height only. (Set the prism height to 0)

- In the Angle Offset Measurement Mode, there are two setting methods for the vertical angle.
1.Free vertical angle : The vertical angle will be changed by rotating telescope.
2.Hold vertical angle : The vertical angle will be locked and never changed by rotating telescope.
When sighting to A0, you can select one way, [Hold] is to fix vertical angle to the prism position. When you select [Free], SD (Slope Distance) and VD (Vertical Distance) will be changed according to the movement of telescope.

Example:

OPERATIONAL STEPS	KEY	DISPLAY					
(1) Click [Offset].	[Offset]	Coord Measurement					
		VA(V): HA(HR): North (N): East (E): Zenith(Z):	$49^{\circ} 39^{\prime} 35^{\prime \prime}$	$-\left[\begin{array}{l} \text { Parameters } \\ \text { PPM: } 0 \end{array}\right]$			
			$87^{\circ} 30^{\prime} 16^{\prime \prime}$	Dist Unit: Meter EDM Mode:Fine[S] Tilt:2-Axis			
			-0.067				
			0.004	- V Ang	e Dist		
			3. 123	Offset			
		Mode	Occ Dis	ce Offset	T Para.		
		Setup	Store Pla	olumn Offset ane Offset			
(2) In the prompted dialogue box click [Angle Offset] to enter into angle offset measurement. (3) Use the stylus to select "Free VA" (or "Fixed VA") to start angle offset measurement.	Angle Offset	Coord Measurement					
		VA(V): 49 ${ }^{\circ} 39^{\prime} 35^{\prime \prime}$		$\left[\begin{array}{l} \text { Parameters } \\ \text { PPM: } \\ \text { RMM } \end{array}\right.$			
		HA(HR):	$87^{\circ} 30^{\prime} 16^{\prime \prime}$	Dist Unit: Meter EDM Mode:Fine[5] Tilt:2-Axis			
		North (N):	-0.067				
		East (E):	0.004	VAn	- Dist		
		Zenith(Z):	3.123	Offset			
			Occ Dis	Column Offset	d 9 Para.		
		Setup	Store Pl				
(4)Collimate prism P, and then click [Measure] to start measurement.	Sight prism P Measure	Angle Offset \times					
		MeasureHD:		$\begin{aligned} & \text { Parameters-} \\ & \hline \text { PPM: } \\ & \text { PSM: -30 } \\ & \text { Dist Unit: Meter } \\ & \text { EDM Mode:Fine[R] } \\ & \text { Tilt:2-Axis } \\ & \hline \end{aligned}$			
		Measure	Continue	Set	Exit		
(5) Use horizontal clamp screw and horizontal tangent to sight target A0.	CollimateA0						
		Measure	Continue	Set	Exit		

(6) Click [Continue], The slope distance, horizontal distance and height differentia and coordinate from instrument to point AO will be shown $※ 1$, $※ 2$)	[Continue]	Angle Offset \times			
		 $V: 49^{\circ} 38^{\prime} 13 "$ $S D:$ 2.266 HD: 1.727 VD: 1.468		HR: $87^{\circ} 29^{\prime} 29^{\prime \prime}$ N $:$ -0.067 E $:$ 0.004 Z $:$ 3.134	
		Measure	Continue	Set	Exit

※1) To set instrument height or target height, click [Set].
※2) Click [Exit] to quit.

- Set Inst. Height/Prism Height before starting measurement.
- To set the coordinate of occupied point, refer to "6.3.1 Setting Coordinate Values of Occupied Point".

7.6.2 Distance Offset

The measurement of a place apart from a prism is possible by inputting offset horizontal distance of front and back/right and left.

- When measuring Coordinate of ground point A1: Set the instrument height / prism height
- When measuring Coordinate of ground point A1: Set the instrument height only (Set the prism height to 0)
- Setting the coordinate of occupied point , refer to "6.3.1 Setting Coordinate Values of Occupied Point".

7.6.3 Column Offset

If it is possible to measure circumscription point (P1) of column directly, the distance to the center of the column (PO), coordinate and direction angle can be calculated by measured circumscription points (P2) and (P3).
The direction angle of the center of the column is $1 / 2$ of total direction angle of circumscription points (P2) and (P3)

- Setting the coordinate of occupied point , refer to "6.3.1 Setting Coordinate Values of Occupied Point ".
Example:

(3) Collimate the point (P 2) on the left side, as shown in the right graph. Click [Continue].	[Continue]				
		Measure	Continue	Set	Exit
(4) Collimate the right side of the column (P3)					
		Measure	Continue	Set	Exit
(5) Click [Continue], the distance between the instrument and center of the column (P0) will be calculated and displayed $※ 1$, $※$ 2)	[Continue]	Column Offset			ers Meter :Fine[\qquad " 087 771 135
		Measure	Continue	Set	Exit

※1) To set instrument height or target height, click [Set].
※2) Click [Exit] to quit.

7.6.4 Plane Offset

Measuring will be taken for the place where direct measuring can not be done. For example distance or coordinate measuring for an edge of a plane.
Three random target points (P1, P2, P3) on a plane will be measured at first in the Plane Offset measurement to determine the measured plane. Collimate the target point (PO) then the instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane.

PO(Point withoyt

- Setting the coordinate of occupied point, refer to "6.3.1 Setting Coordinate Values of Occupied Point".

Example:

(1)In Offset dialog box, click [Plane Offset] to enter into Plane Offset measurement.	KEY	DISPLAY					
	[Plane Offset]	Coord Measurement \times					
		va(v): HA(HR): North (N): East (E): Zenith(z):	$49^{\circ} 39^{\prime} 35^{\prime \prime}$	$\|$Parameters PPM: 0 PSM: - 30 Dist Unit: Meter EDM Mode:Fine[5$]$ Tilt:2-Axis			
			$87^{\circ} 30^{\prime} 16^{\prime \prime}$				
			-0.067				
			0.004				
			3. 122	$33 \quad \mathrm{~A}$ Angle Offset Distance Offset Column Offset Plane Offset	4 Dist		
		Mode	occ Dista		Para.		
		Setup	Store				
(2)Sight prism P1, click [Measure] to start measure After measuring, click [Continue].	[Measure] [Continue]						
		Measure	Continue	Set	Exit		
(3) Measure the points P2, Click[Measure] to start measure.. After measuring, click [Continue].	[Measure] [Continue]						
		Measure	Continue	Set	Exit		

$※ 1$) To set instrument height or target height, click [Set].

- In case the calculation of plane was not successful by the measured three points, error displays. Start measuring over again from the first point.
- Error will be displayed when collimated to the direction which does not cross with the determined plane.

7.7 PARAMETERS SETTING

In basic survey, some parameters can be set.
Communication Parameters
Factory default settings are indicated with underlines.

Menu	Selecting Item	Contents
1. Baud Rate	$1200 / 2400 / 4800 /$ $9600 / 19200 / 38400 / 57600$	Select the baud rate
2. Data Number	$7 / 8$	Select the data length seven digits or eight digits
3. Stop Bit	$1 / 2$	Select the stop bit.
4. Check Mode	None/Odd/Even	Select the parity bit.
5. ACK/NAK	Yes /No	When communicating to an external device, the protocol for handshaking can omit the [ACK] coming from the external device so data is not send again. Yes: Omit the [ACK] No : Standard

Other Parameters

Menu	Selecting Item	Contents
1. Coord. Ranking	NEZ/ENZ	Select the display format in the coordinate measurement mode for NEZ or ENZ
2.Occ Save	0 Set / Save	Select whether to save coordinate of occupied point or 0 Set.
3.Angle Unit	Deg/Gon/Mil	Select degree (360 $)$, gon (400 G) or mil (6400 M) for the measuring angle unit to be shown on the display
4.Dist Unit	Meter/Int.Feet/U.S Feet	Select the distance measuring unit.

Example:

(4) Click [Default] to use the default communication parameters,	[Default]	Parameter Set 0 OK \times
		COM Parameters Other Parameters
		[Data 8 bit Baud: 1200
		Check Mode - Odd \bigcirc Even
		ACK/NAK
(5) To set other parameters, click [Other Parameter]. Set as the same method.	[Other Parameter]	Parameter Set \quad OK \times
		COM Parameters Other Parameters
		Angle Unit Deg \qquad Gon Mil
		Dist Unit Meter Feet US-Feet
(6) After setting click [OK] to quit. The display returns to basic survey main menu.	[OK]	

8. START STANDARD SURVEY PROGRAM

Main feature of standard survey program:

- Multiple Job Files

Standard Survey Software uses named jobs with separate files for raw data,
coordinates and strings. The job is given alphanumeric names. You may have many jobs in the system. You may create a new job for storing data, or you may open an existing job for data storage. You may also delete job files.

- Traverse \& Topographic Recording Sequences

Backsight and Foresight observation options allow user to record traverses or sets of multiple observations in any sequence. Multiple observations of foresights and backsights are averaged dynamically.
A side shot option allows data collection for topographic surveys. Traverse and topographic collection may be combined.

- Offsets

A single offset option is activated by a function key and allows manual entry of perpendicular offsets, or calculated offsets, including remote elevation from a second angle reading.

- Point Coordinate and String Generation

Coordinates are generated in real-time with optional storage. Stored coordinates are recalled at occupied stations and used for back bearing calculation.

- Horizontal Circle Setting

Backsight bearing may be set on the instrument from calculated coordinates or manual input.

- Control point Coordinate Library

Every control point library is accessible by all jobs for storage of frequently used coordinates. Control point file may be entered manually, or uploaded from computer.

- Point Code Library

Point codes may be selected from the library file.

- Edit and Delete Data

Raw data, point coordinates, control point coordinates and codes may be edited and deleted in the total station.

- Download to Serial Port

Raw data, coordinates can be sent to a computer by using a serial cable.

- Upload Point Code from Serial Port

The point code of total station may be created by uploading codes from a computer.

- Upload Roads Design data from serial port

Horizontal alignment data, vertical alignment data and cross section data for Alignment lay out can be uploaded from serial port.

- Point Setting-Out

The standard setting out program calculates bearing and distance, displays offsets from occupied point to lay-out point after each measurement. Coordinates of set-out points can be saved and differences downloaded in the fill-cut files.
Note that the scale factor defined under the SETUP will be used in the calculation of setting out distances.

- Strings Setting Out

Setting out of points by string (point code) allows the setting out of points on a line created in design software.

- Road Setting Out

Two options allow the setting out of points by chainage and offset from a road alignment. Refer to Road Alignment.

- Traverse Adjustment

The Bowditch adjustment method is used to adjust a recorded traverse. The traverse is defined by entering start and end points and the intermediate points are determined from foresight observations.

- Resection

Computation of coordinates from known points. The method of calculation is dependent on the data available. Either two points with angles and distances, or three points with angles only are required. Where more than three points and up to maximum of 10 points are available the least squares method is used.
Note that the scale factor defined under the SETUP function will be used is the calculation.

- Occupied Point Elevation Computation

Computation of the occupied point elevation by single observation to a known point.

- Intersections

Coordinates calculation from two known points, with either bearings or distances.

- Inverse

Computation of bearing and distance between 2 known points, Note that the scale factor defined under the MENU function will be used in the calculation of distances.

- Area Calculation

Area calculation of a serial of points defined by point code.

- Radiation

Coordinates of a point can be computed by entering bearing and distance.

- Missing Line measurement

The slope distance, horizontal distance and vertical distance between two points can be computed.

- Batter boards

A program for setting out in building area. If two points can not be setout, a batter board can be placed in the vicinity. The intersection point of the line connecting two setout points and the batter board can be found.

- Tape Dimension

Tape dimension is a program which integrates surveying using a total station and a measuring tape. This program is especially useful when a quick survey of an object is required.

9. PROJECT

In standard survey menu, click [Project].

This menu allows following functions be performed:
(1) Create, open, delete job file
(2) Setting job option
(3)Set scale factor
(4) Data export/import

Standard measuring program require that every time measuring you must create a job file name, if not, system will create a default file name (default) automatically. All measuring results will be saved in this file.

9.1 CREATE NEW PROJECT

Create a new project file. A job name has a maximum of 16 characters and should be made up from the letters A-Z, numbers 0-9 and the minus sign (_\# \$ @ \% + -), but the first character can not be a space.

$※ 1)$ Project: All the measurement data will be stored in this file.
Operator: Operator's name (Can be default).
Brief: Brief information of the project. (Can be default)
Other: The operator can enter other information, such as instrument model.(Can be default)
$※ 2$) Press [ESC] key to exit the screen without saving the settings.
$※ 3$) If the project exists, the system prompts "Project are the same!" So, select OPEN option to see a list of current jobs before creating the new job if you are not sure which jobs currently exist.

9.2 OPEN PROJECT

Example:

OPERATIONAL STEPS	KEY	DISPLAY
(1)In [Project] menu, click [Open] or press $[\mathbf{\Delta}] /[\mathbf{\nabla}]$ to select. The screen lists all jobs in internal memory.	[Open]	
(2)Double click to open the project, or input project name in the Name field.		
(3)In the prompt dialog box, double click project name to open the project. All the measurement data will be stored in this file. The display returns to standard survey main menu. $※ 1)$		Project Record Edit Program 四 x Information- Project:ash.npj Meas Data: 0 Coord Data: 0 Fixed Data: 0 Occ Pt: BS Pt: SS Pt: FS Pt: Standard Measurement Program
※1) Press [ESC] to quit and return to last screen standard survey main menu.		

9.3 DELETE PROJECT

Example:

OPERATIONAL STEPS	KEY	DISPLAY		
(1) In [Project] menu, , Click [Delete] or press $[\mathbf{\Delta}] /[\mathbf{V}]$ to select. The screen shows as the right graph.	[Delete]		Project $\begin{array}{l}\text { default.npj } \\ \text { ash.npj }\end{array}$ $1 /$ Browse	
(2) Double click the project you want to delete.			Project defaut.ñj ®hhinil	
The system defaults to delete all projects. To delete some data of the project, click "Delete Files" and then choose the data files need to delete in the File Option. $※ 1$)		File Option \square Raw Data File \square \boxed{V} coord Data File \boxed{V} Fill-Cut Data File \boxed{V} x-Sect Data File \square Hz Alignment File \square VT Alignment File	Project defaut.npj Zshanili 	Last visit tirf $2000812-3$ $2008-12-9$ Delete Stashlash.np
(3) Click [Delete]. The system prompts Delete successful!" $※ 2$)~ ※3)	[Delete]			
※1)Delete all project: Delete all content of the selected job. $※ 2$) Current project can't be deleted. ※3) Click [Browse] to view project in internal memory.				

9.4 OPTION

OPERATIONAL STEPS	KEY	DISPLAY
(1)In [Project] menu, click [Option] (or press $[\mathbf{\Delta}] /[\boldsymbol{\nabla}]$ to select), the screens as the right graph.	[Option]	
(2)Click each item to set. Click [Set] to return.	[Set]	Project Record Edit Program all Information Project:default.npj Meas Data: 0 Coord Data: 0 Fixed Data: 0 Occ Pt: BS Pt: SS Pt: FS Pt:
		Standard Measurement Program

Options:

Fixed File: Set fixed point file [On] or [Off].

1) If it is set as [On], when the fixed point file will be scanned for coordinates before prompting for the coordinates. When the same point number is saved in coordinate database or fixed database. The data in [coordinate data] will be called up.
2) If the station file option is OFF, the fixed point file is not searched.

Coord. Display: Set whether to display coordinate of NEZ during measurement.
Coord Transform: Set whether to calculate and save coordinate.

1) If set as [On], when the measuring mode is H/V/SD or H/HD/VD, the coordinates will be calculated and saved automatically.
2) If set as [Off], the calculated coordinate will not be saved.
[Note]: In adjusting traverse, to save coordinate or set the calculated bearing angle into instrument, this option should be set to ON.
Layout Save: The setting of storing layout point coordinates. When the coordinates are saved, each layout point with designed coordinates and layout coordinates and cut or fill height will be listed.
※Note that System Setting apply to all jobs, when it is changed, all jobs will be affected.

9.5 GRID FACTOR

Measured horizontal distance is multiplied by the scale factor in coordinate calculation. The raw data is not altered by the scale factor. Enter the scale factor and the mean elevation into screen, the downloaded raw data will contain a scale factor record. The following grid factor is used to calculate coordinates.

Calculation Formula

1. HEIGHT FACTOR $=\frac{R}{R+E L E V}$

R : The average radius of the earth
ELEV: The height of the mean sea level
2. SCALE FACTOR

Scale factor: the scale on the measurement station
GRID FACTOR
Grid factor $=$ height factor \times scale factor

Distance Calculation

1. GRID DISTANCE
$H D g=H D \times$ Grid factor
HDg: Grid distance
HD : Ground distance
2. GROUND DISTANCE
$\mathrm{HD}=\frac{H D g}{\text { Grid }}$
Enter the scale factor and elevation.

Example:

Note:1. Inputting range of scale:0.990000 ~ 1.010000. The default value: 1.00000 2. Inputting range of average altitude: -9999 ~ 9999 The default value: 0

10. DATA EXPORT/IMPORT

10.1 DATA EXPORT

Measuring data coordinate and data of dig/fill, cross section may be downloaded to a computer.

USB HDD Export:

KTS-580(R) allow surveyer move data through function of USB transmission.
Export the data you need to the disk inside of the total station first. System will save the result in TXT form..Plug in the USB HDD, then you could find that icon of USB HDD in KTS-580(R) system.Copy that file you need to USB HDD and disconnect it from total station.At least,you could move that data file to your PC easily.

SOFTWARE EXPORT

Export the project you need to the disk inside of the total station first. System will save the result in TXT form. Then connect the KTS-580(R) total sation to computer with the USB cable after checking that if there Microsoft ActiveSync software has already been installed. Microsoft ActiveSync will show as follow:

At same time this icon will appear in your My computer.

Mobile Device

Now you should find the TXT form file in Mobile Device and copy them to your pesonal PC disk.The process is completed.

10.2 DATA IMPORT

Coordinate files for set out, fixed point and code library files, alignments and cross section files for set out may be uploaded from a computer to the total station by series port.

Example:

(2)Select the data type you need to import, and click [Import]. ※1)	[Import]	
(3)The imported file is found.		Import File \SouthDisk ${ }^{\text {WinTS }}$ default WinEG WinMG Name: \square Iype: Text File (*.txt)
(4)Click [OK], data is imported to appointed position and return to standard survey main menu.	[OK]	

※1)HZ Alignment: Upload a horizontal alignment for road design layout. Data format please refer to appendix A. There is only one start point can be existed in a block of horizontal alignment data; otherwise it may cause some mistakes.

VT Alignment: Upload a vertical alignment for road alignment layout. Data format is described in Appendix A.

X-Sect Data: upload a design cross section file for road design layout: The uploaded cross sections cannot be edited nor downloaded. Data format is described in Appendix A.

USB HDD Import:

Make sure that the TXT form data you need to transmit has already existed in USB HDD. Plug in the USB HDD,then you could find that icon of USB HDD in KTS-580(R) system.Find out the TXT form file you want to transmit.Use copy or cut moving function to transmit the TXT form file to KTS-580(R) system,Open the Standared survey program and import the TXT file you just copy from PC.This process is
completed.

SOFTWARE IMPORT:
Connect the KTS-580(R) total sation to computer with the USB cable after checking that if there Microsoft ActiveSync software has already been installed. Microsoft ActiveSync will show as follow:

Find out the TXT form file you want to transmit.Use copy or cut moving function of windows to transmit the TXT form file to Mobile Device, the icon of which shown as:

Mobile Device

After that you could find that file in the Total station's disk.Open the Standared survey program and import the TXT file you just copy from PC.This process is completed.

11. RECORD MEASUREMENT DATA

The RECORD menu is mainly used for collecting and recording raw data. It allows setting occupied point and backsight bearing, start backsight observation, foresight observation, sideshot observation and cross section observation. In standard survey main menu, click [Record] or press [$\mathbf{4}$]/ [$\boldsymbol{\downarrow}$].

Project	Record	Edit Program	$\square \square$	\times
Informat	Setup			
Project:d	BS Obs			
Meas Dat	FS Obs			
Fixed Dat.	SS Obs			
Occ Pt:	X-Sect			
BS Pt:				
SS Pt:				
FS Pt:				

Standard Measurement Program

11.1 SETTING OCCUPIED POINT AND BACKSIGHT POINT

Example:

OPERATIONAL STEPS	KEY	DISPLAY	
(1)In [Record] menu, click [Setup] ※1)	[Set]	Occ \& BS Set	x
		Occ Pt: \square	List
		Inst. Ht: 1.500	Info
		Code:	
		$\int_{\text {BS Pt: }}$	List
		R. Ht: 1.600	Info
		Azimuth:	
		Resection Elevation	Set

※Note: If the point exists both in the point file and fixed point file, then coordinates from the point file will be used.

11.1.1 Resection

If the coordinates of an occupied point are unknown, a resection can be performed to
compute these coordinates. A resection involves the measurements from an occupied point to several other points with known coordinates. It is possible to perform a resection by measuring angles and distances or by measuring angles only. The type of measurements influences the minimum number of observations needed to perform a resection. In case of angle as well as distance measurements a minimum of 2 observations are required, by measuring angles only a minimum of 3 observations should be performed.

(7)The system returns to resection main menu. The screen displays the PT just measured If the coordinate is unknown, system will request user to input the coordinates and then return to resection main menu.		Resection \times					
		Pt dha			dVA		
		4\|				-	
		e1: scale:					
		Add	Delete	Para.	Coord	Enter	
(8)Click [Add] again, repeat steps (2) ~(6) to finish measuring and recording other resection points. $※$ 1)	[Add]	Resection \times					
		$\begin{array}{\|l\|} \hline \mathrm{Pt} \\ \hline \frac{11}{12} \\ \hline \end{array}$	dHA		dVA		
			$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$		-7.2604		
		\|	$^{\text {e1: }-43}$				-
		$\begin{aligned} & \text { e1: -433. } \\ & \text { scale: } \end{aligned}$					
		Add	Delete	Para.	Coord	Enter	
(9) In case 3 angle measurements or 2 angle and distance measurements have been performed, the coordinates of the occupied point can be displayed by pressing [Coord]. Click [Enter]. $※ 2$)		Resection				\times	
		Pt 11	dHA		dVA		
		$\begin{array}{\|l\|l\|} \hline 11 \\ 12 \end{array}$	0.0000			\bullet	
			North	1897.529	529		
			EastZenith	5344.035			
				893.400			
		4\|		Enter			
		$\begin{aligned} & \text { e1: -433.717 } \\ & \text { scale: } \end{aligned}$					
		Add	Delete	Para.	Coord	Enter	

$※ 1$) On the lower side of the screen discrepancies (e1) or the standard deviation in $\mathrm{N}, \mathrm{E}, \mathrm{Z}$ direction ($\mathrm{sN}, \mathrm{sE}, \mathrm{sZ} \mathrm{)} \mathrm{of} \mathrm{the} \mathrm{occupied} \mathrm{point} \mathrm{will} \mathrm{be} \mathrm{displayed}$. measurements have been performed. They are calculated using the following equations.
e1 = HD12 (Calculated using measurements) - HD12 (Calculated using known coordinates)
HD12 denotes the horizontal distance between the first and second point.
$※ 2$) If the distance of more than three points or angles of more than four points have been measured; the standard deviation will be displayed instead of discrepancies. The number of residuals shown depends on the parameters selected. Generally, the worst observation will have the largest residual. This observation can be deleted by placing the bar on this observation using the arrow key and then press [DEL]. The observation is removed from the list. The coordinates of the occupied point, its standard deviation or discrepancies and the residuals of the remaining observations are automatically recomputed.
By clicking [Para.], the parameters which are calculated during resection can be selected. The following screen will be shown.

- It is possible to select whether the level of the occupied point, a scale factor or the backsight bearing ('Calculate Bkb') should be calculated. Furthermore it is possible to select whether the calculated scale or the measurements which have been performed ('Store res meas') should be stored.
- After setting, click [Enter] to return to the main resection screen, saving the changed mode and (re)calculation of the occupied point, residuals and the required parameters.

S Press [ENT] in the resection main menu will quit this function and save the coordinates of the occupied point. In case 'Store res meas' was turned on in [PARAM], the measurements which have been performed and which are shown in the box will be saved as well.
[S In case 'Calculate Bkb' in [PARAM] was turned on, the backsight bearing will be calculated and set by pressing [ENT] key and leaving the main resection screen. The computation will use all measurements which are shown in the box. In order to calculate a backsight bearing of high quality:
The residuals of the horizontal angle should have low values.
The user shouldn't change the horizontal angle when leaving the main resection screen.

NOTE :

1) The measurements can be performed in any order. The point numbers shown in the box in the main resection screen will be sorted by horizontal angle.
2) When 3 points are used for resection using angle measurement only, you must

E.g.:

1) If $p 1, p 2, p 3$ and OccPt fall on the circle, the result can not be computed.
2) If the point is near the circle then the result is unstable.
3) Residuals are useful to avoid that observations of low quality will be used for the resection computation. However, in case of a small number of observations or a bad geometrical constellation of the points it is possible that one bad observation influences several residuals.
4) The unit of residuals is similar to the unit of the measurements performed. However the residuals of horizontal angle and vertical angle are always displayed in decimals. E.g.: $3^{\circ} 49^{\prime} 50^{\prime \prime}$ shows as 3.4580
5) The message 'Occupied point coordinate is not computed' is shown if the calculated scale is not within $0.9 \sim 1.1$.
6) More than one measurement to the same point can be performed during resection. In that case the character ${ }^{\prime *}$ ' is placed behind the point number. The average of the measurements to same point is used for the calculations.
7) The following table shows which residuals will be shown.
$\triangle H$: The residual of horizontal angle. $\triangle V$: The residual of vertical angle
$\triangle S D$: The residual of slope distance.
NOTE: The residuals which will be shown depend on the measuring mode and whether elevation is calculated.

	Calc. Elevation : ON	Calc. Elevation : OFF
Meas Mode : H/V/SD	$\triangle H, \triangle V, \triangle S D$	$\triangle H$
Meas Mode : H/V	$\triangle H, \triangle V$	$\triangle H$

11.1.2 Elevation of Occupied Point

If the elevation of a point to be occupied is not known but a point of known elevation can be observed, then the station elevation can be computed.
Example:

OPERATIONAL STEPS	KEY	DISPLAY	
(1)In [Occ. \& BS Set] main menu, click [Elevation]. ※1)	[Elevation]		
		HA 85 ${ }^{\circ}{ }^{\circ} 02^{\prime \prime} 06^{\prime \prime}$	Record
		SD	Measure
		vD	Mode

11.2 BACKSIGHT OBSERVATION (BS OBS)

For record the raw data of backsight point.
Back Sight Observations only can start after setting of occupied point and backsight point.
Example:

[NOTE]: Back Sight Observations only can starts after setting of occupied point and backsight point. Otherwise system will prompt to set occupied point and backsight point and access BS OBS screen.

11.3 FORESIGHT OBSERVATION (FS OBS)

The data of Foresight Observations mainly used for the traverse adjustment calculation.
After setting Occ point and BS point, the measuring begins.
Example:

11.4 SIDESHOT OBSERVATION (SS OBS)

OPERATIONAL STEPS	KEY	DISPLAY					
(1)In [Record] menu click [SS Obs] or press $[\mathbf{\Delta}] /[\mathbf{V}]$ to enter SS Measurement.	[SS Obs]	SS Measurement			\times		
		$146^{\circ} 56^{\prime} 40^{\prime \prime}$	$\overline{\text { " }}$				
		VA $81^{\circ} 14^{\prime} 41^{\prime \prime}$					
		SD					
		HD					
		VD	Code				
		Parameters PPM: PSM: - PSO Dist Unit: Meter EDM Mode:Fine[s] Tilt: Off					
			Record	Measure	Mode		
			Code	HV.R	Function		
(2)Input PT, R.Ht. Click [Measure] to start measure. ※1), ※2), ※ 3)	Input PT, R.Ht [Measure]	SS Measurement \times					
		HA $147^{\circ} 20^{\prime} 12$	$\mathrm{IV}^{\text {"1 }}$ Pt Pr	1			
				1.683			
		SD >>>-----	R. Ht				
		HD	CodeString				
		VD					
		PPPM: ${ }^{\text {Parameters }}$	Record				
		PSM: -30 Dist Unit: Meter		Measure	Mode		
		$\begin{aligned} & \text { EDM Mode:Fine[5] } \\ & \text { Tilt: Off } \\ & \hline \end{aligned}$	code	HV.R	Function		
(3)After measuring, the results will display. Click [Record], a dialog box prompts as the right graph.	[Record]	S5 Measurement			\times		
		HA $147^{\circ} 20^{\prime}$	0" ${ }_{\text {"1 }}^{\text {Pt }}$	1			
		VA $811^{\circ} 14^{\prime} 4{ }^{\text {a }}$		" R.He 1.683			
		SD SS Obs	OK\|×				
		Record current Obs Data?					
		Parame					
		PSM: -30 Dist Unit: Meter	Record	Measure	Mode		
		$\begin{aligned} & \text { EDM Mode:Fine[s] } \\ & \text { Tilt: Off } \\ & \hline \end{aligned}$	Code	HV.R	Function		

FUNCTION KEY

In [SS Obs], click [Function], the function menu prompts.

11.4.1 Offset

Apply the following procedure to a point which can not be measured directly. Measured data change to raw data directly.

A radial (forward) offset is along the line of sight, with positive away from the instrument, and a tangential (right) offset is perpendicular to the line of sight with positive to the right, as viewed from the instrument. A vertical offset is positive upwards.

- Offsets may be entered manually if measured by tape, or computed by measuring a second angle to the required point.

A tangential offset may be computed by recording a second angle to intersect with the perpendicular offset from the current observation. This method can be used to obtain an approximate position for the center of an object, for example a tree. Take a shot to the side of the object. When the offset screen has been selected, sight the center of the object, and press [Horizon] to read the horizontal angle. A perpendicular offset from the original line of sight will be computed and entered to the screen.

To compute a vertical offset (remote elevation), make an observation to an accessible point above or below the point required. When in the offset screen, sight the point required, and press [Vertical]. The vertical angle will be used to compute the difference in elevation from the ground to the point above or below. The offset will be written to the screen. Make the current target height has been entered into the point code screen before selecting [Offset].

Record an observation as close as possible to the required point.

OPERATIONAL STEPS	KEY	DISPLAY			
(1)In [SS] function sight the prism center. Then click [Measure] to start measure.	[Measure]	SS Measurement			
		$147^{\circ} 20^{\prime} 14^{\prime \prime}$		Pt 3	
		$81^{\circ} 15^{\prime} 20^{\prime \prime}$		$\text { R.Ht } 1.683$	
		4.768		Note	
		4.713		Code	
		0.725		String	
		PSM: -30 Dist Unit: Meter EDM Mode:Fine[5] Tilt: Off \qquad	Record	Measure	Mode
			Code	HV.R	Function
(2)Keep the instrument still, click [Function]. A dialog box prompts as the right graph.	[Function]	SS Measurement			
		$147^{\circ} 20^{\prime} 16^{\prime \prime}$		$\begin{array}{ll} \hline \text { Pt } & 3 \\ \hline \end{array}$	
		$81^{\circ} 15^{\prime} 20^{\prime \prime}$		$\text { R.Ht } 1.683$	
		4.768		Note	
		4.713		Code	
		0.725		String	
		Dist Unit: Meter	Record	(4) Plan	Meas
		EDM Mode:Fine[S] Tilt: Off	Code	Pt to Line Mode Ctrl Input	
(3)In Function menu, click [Offset] to enter Offset measurement.	[Offset]	SS Measurement			
		147 ${ }^{\circ} 20^{\prime} 16^{\prime \prime}$		Pt 3	
		8 Offset Meas			
		Away 0			
		Right 0			
		Paramete Vertical 0			
		$\begin{array}{\|l\|l\|} \hline \text { PPM: } \\ \text { PSM: } & -30 \\ \text { Horizon } \end{array}$	Vertical	$\xrightarrow{\text { Enter }}$	Mode
		Dist Unit: Meter	गecorn	measure	
		EDM Mode:Fine[5] Tilt: off	Code	HV.R	Function

（8）Click［Enter］to return to SS Measurement screen．	［Enter］	SS Measurement					
				$\begin{array}{l\|l} \text { Pt } & 4 \\ \text { R.Ht } & 1.683 \end{array}$			
		$\frac{148^{\circ} 16^{\prime} 16^{\prime \prime}}{81^{\circ} 15^{\prime} 20^{\prime \prime}}$					
		SD 4.768	4.768	\square			
		4.713		\square			
		VD 0.725	St				
		EDM Mode：Fine［s］ Tilt：off	Code	HV．R	Function		

11．4．2 Plane Offset

This mode is similar with【PROGRAM】 \rightarrow 【Offset】 \rightarrow 【Plane Offset】．
Example：

(8)Click [Record] to record results of Plane Offset.	[Record]	SS Measurement \times			
		HA $151^{\circ} 26^{\prime}$	151026 ${ }^{\prime \prime} 43^{\prime \prime}$	t 5	
		47034'43'		+ 16	
		SD North	North 3753.282		
		East			
		VD \square Zenith	-1207.789		
		Paramet PPM:		Enter	t Mode
		PSM: -30 Dist Unit: Meter	Record	Measure	Mode
		EDM Mode:Fine[S]	Code	HV.R	Function
(9)Click [Enter] to save measuring results.	[Enter]	SS Measurement \times			
		153038'52'		Pt 7	
		47034'43'		R.He 1.683	
		2.276		Note	
		1.680		Code	
Repeat steps (7) ~ (8) to finish the		1.535 s		String	
measurement of other points on the		$\begin{aligned} & \text { Parameters } \\ & \text { PPM: } 0 \\ & \text { DCM. } \end{aligned}$	Plane Offset Mode		
		PSM: -30 Dist Unit: Meter	Record	Measure	Mode
		EDM Mode:Fine[S] Tilt: Off	Code	HV.R	Function

$※ 1$) [On]: Function key used to display "Plane Offset". In SS Measurement screen "Plane Offset Mode" shows
[Off]: Function key used to shut "Plane Offset".

11.4.3 Pt. Line Mode (For Measurement from Point to Line)

This mode is used for coordinate measurement of target points which treats $A(0,0,0)$ as the origin and line $A B$ as the N axis. See below:

A: reference point 1
B: reference point 2

- After measuring coordinates of point A, B, enter Point \& Line Measurement Mode. Set A, B as reference point 1, 2. Set once again a coordinate system which has A as origin and line $A B$ as N axis. Start measurement again. (Never change information of
occupied point during the process.)
Example:

$※ 1)[\mathrm{On}]:$ It is used to activate Point to Line Mode.
[Off]: It is used to disable the Point to Line Mode.

11.4.4 Control Input

Control Input function is used for editing the string and appended code of the point

Example:

11.5 CROSS SECTION SURVEY

The cross section survey allows points on a cross section to be surveyed and downloaded in chainage, offset and level format.

It operates similar to the side shot observation. Every cross section must have a center line point to compute the chainage and offsets.

Example:

Set occupied point and backsight point.

OPERATIONAL STEPS	KEY	DISPLAY				
(1)In [Record] menu click[X-Sect], a dialog box prompts as the right graph. Input CL Code and String and click [Enter].	[X-Sect] Input CL Code and String	 Standard Measurement Program				
(2)Start cross section measurement. First measure point on center line. Input code of center line (The code should be same as the code of last screen. The program will identify it's doing center-line measurement). Click [Measure] to start survey.	[Measure]	SS Measurement				
(3)After measuring, the point result of center-line will be displayed.			"		\square Mode Functi	
(4)Click [Record] to record measure results.	[Record]		$0^{\prime \prime}$ Pt R.f Record Code	$\begin{aligned} & \begin{array}{l} 8 \\ 1.683 \\ \hline 0 \mathrm{~K}> \end{array} \\ & \hline 1 . \end{aligned}$ Obs Data? Measure HV.R		

[NOTE]:

(1.) The maximum point number for each cross section is 60 .
(2.) The chainage number automatically displayed is calculated as the horizontal distance from its occupied point to its center.

12. EDIT DATA

The edit menu provides options to edit raw data, point coordinates, the fixed point library, and the code library.

Standard Measurement Program

12.1 EDITING RAW DATA

To edit the raw data from the current job select Raw Data from the Edit menu.:

Function keys at the bottom of the screen:
[Start]: Go to the beginning of this file.
[End]: Return to the end of the file
[Search]: To search a specific point, code or string in the file

Example

B:
Click [Search], in the prompted dialog box input PT, Code, String, and select between Full Name and Part Name. Click [Search] to start search.
B :

(3)After finding the needed data,				
click [Edit],the Meas. Data Edit				
dialog box appears.		\quad		
:---:	:---:			

(4) Input new data, and then click	
[Save],system returns to last screen.	
$※ 1), ※ 2$)	

$※ 1$) Date, time and measure data can't be modified.
$※ 2$) Press [ESC] to return to standard survey main menu.
NOTE: 1. The range of each coordinate is from -9999999.999 to 9999999.999
2. Coordinates that are entered or changed are rounded to 3 decimal places.

12.2 COORD. DATA

The coordinates generated from the current job may be edited or point coordinates may be manually entered. In
[Edit] menu click [Coord. Data].

12.2.1 Edit Coord. Data

Example:

OPERATIONAL STEPS	KEY	DISPLAY			
(1)In the Edit Menu, click [Coord. Data], system lists all coord. data in the project.	[Coord. Data]	Coord Data Edit \times			
		Pt	Style		North Δ
		111.	NEZ		566.000
		12	NEZ		1000.00
		4	NEZ		3753.28
		1	NEZ		3750.79
		2 3 3	NEZ NEZ		3750.79 3749.05
		5	NEZ		3753.5:
		6	NEZ PTI		3753.25
		${ }^{7} 1$			-
		Search	Add	Delete	Edit

(4)Input new data	Input data	Coord Data Edit			
		Pt	Coord Edit		North \triangle
			Pt 3		N66.000
		13	Code		0.000
			String		3753.28 3750.79
		2			3750.79
			E 100		3749.05-1
		6	z 50		3753.25
		4	Code	Enter	-
		Search	Add	Delete	Edit
(5)Click [Enter], the screen returns to the Coord. Data Edit dialog box, the data is rectified.	[Enter]	Coord Data Edit \times			
		Pt	Style		North \triangle
		11	NEE		566.000
		12	NEZ		1000.00
			NEZ		3753.28
		1	NEZ		3750.79
		2	NEE		3750.79
		3	NEZ		46.000
		6	NEZ		3753.25
			PTI		2.953
		4\|			-
		Search	Add	Delete	Edit

12.2.2 Add coord. data

Example:

OPERATIONAL STEPS	KEY	DISPLAY			
(1)In the Edit menu, click [Coord. Data], the system will list all coordinate data in the job.	[Coord. Data]	Coord Data Edit \times			
		Pt	Style	Code	North Δ
		111.	NEZ		566.000
		12	NEZ		1000.00
		${ }_{4}^{13}$	NEZ		0.000
			NEE NEZ		3753.28 3750.79
		2	NEZ		3750.79
		3	NEZ		46.000
		5	NEZ		3753.5:
			NEE PTI		${ }^{3753.25} \square$
			+		-
		Search	Add	Delete	Edit
(2) Click [Add], Coord Edit dialogue will display, as shown on the right.	[Add]	Coord Data Edit			
		Pt	Coord Edit		North \triangle
		11	PtCode		566.000
		12 13			10.000
		4	String		3753.28
		1	$N \quad 0$		3750.79 3750.79
		3	E 0		46.000 .
			$z \quad 0$		3753.5:
					0.953
		4\|	Code	Enter	-
		Search	Add	Delete	Edit

12.2.3 Delete Coord. Data

Example:

		Coord Dat				\times
		Pt	Style	Code	North	\triangle
			NEZ NEZ		0.000 3753.26	
		1	NEZ		3750.79	
(3) Click [OK] and the data are	K]	2	NEZ		3750.79	
Cick [OK] and the da]	3	NEZ		46.000	
deleted. The screen returns, and		5	NEZ		3753.5:	
the cursor moves to next row.		6	NEZ		3753.25	
the cursor moves to next row.		8	NEZ	south	3753.19	
		99	NEZ	south	100.000	
		1			-	
		Search	Add	Delete	Edit	

NOTE: 1. The range of each coordinate is from -9999999.999 to 9999999.999
2. Coordinates that are entered or changed are rounded to 3 decimal places.

12.3 FIXED POINT DATA

To edit the fixed point library select Fixed Data from the EDIT menu. This function is used to edit the coordinates of control point. Editing the fixed point data is similar to editing Coord.Data in the EDIT menu.

12.4 CODE DATA

To edit the code library select Code Lib from the EDIT menu.

[Delete]: Delete a layer.
[Edit]: Rename a layer.
[Add]: Add a layer.

12.4.1 Create New Layer

Example:

12.4.2 Edit Layer/Code

12.4.3Delete Code

※1) The layer can't be deleted when the layer contains codes.

12.5 FILL-CUT DATA

The fill-cut data generated by the layout option can be viewed by the [EDIT] \rightarrow [Fill-Cut Data] option.

The display shows the coordinates saved during setout, and the difference to the uploaded coordinate.

As shown in the graph below:

－This function can realize search for the fill－cut data．
－Fill－cut data can not be edited．

13．PROGRAM MENU

The menu includes below functions：
（1）Set Out
（2）Roads
（3）Cogo
（4）Traverse
（5）B．Boards
（6）Tape Dim

13．1 SET OUT

To show the SET OUT menu，from the【Program】menu，select【Set Out】．The setting out option allows setting out by point number，strings，alignments and cross sections． －The basic routine for setting out is similar in all these methods，except for the way data is uploaded and the setup sequence．
－Setting out points allows setting out by point number in point number order．Setting out strings allows setting out by string or point code in the order in which the points were uploaded within the string．Setting out of alignment and cross sections，points are specified by chainage and offset with reference to an uploaded alignment．

13．1．1 Occupied Point\＆Backsight Point

In［Program］menu，click［Set Out］\rightarrow［Setup］，in the prompt menu click［Set］to enter into Occ．\＆BS Set dialog box．The setting procedure is similar to those in［RECORD］
menu.

- If alignment data exists, the occupied point screen changes to include chainage and offset:

- Here the method of using alignment to set occupied point and backsight point will be introduced.
Example:

OPERATIONAL STEPS	KEY	DISPLAY
(1) In [Program] menu, click [Setout], in the prompt box click [Setup] to enter into Occ. \&BS Set screen.	[Set Out] [Setup]	
(2) If alignment data exists in internal memory, you can click [Align] to set the occupied point Here the method of using alignment to setup occupied point and azimuth angle is introduced In "Occ" field click [Align.] to start using chainage to setup station function.	[Align.]	

- If you already have entered the occupied point and backsight point details from either RECORD or SETOUT menus, you can skip these routines and go directly to the set out POINTS,STRINGS,ALIGN or X-SECTS.

13.1.2 Point Set Out

After setting occupied point and backsight point, you can start point setting out Example:

Explanation:

The ANGLE screen displays the required horizontal angle (Req), the horizontal angle from the current to the setout point (Turn), the distance from the prism to the setout point (Away) and the difference in elevation (Cut).

The OFFSET display shows the distance from the measured point to the required setout point in the form of offsets.

Req : The required bearing angle from occupied point to setout point.
Turn: The angle that should be rotated. When it is 0 , means the bearing angle is correct.

Away: The distance from prism to setout point. Positive sign indicates that prism should move far from instrument. Negative sign indicates that prism should move towards instrument. The value means the distance to be moved.
Fd : It is the distance along the line of sight to the instrument and is positive away from the instrument. Positive sign means the point is in front of sight line; Positive sign means the point is behind sightline.
Right : It is perpendicular to the line of sight with positive to the right when facing the instrument. Positive sign means the point is in the right side of sight line; Positive sign means the point is in the left side of sightline.
Cut: The elevation difference of the point. Positive sign indicates that this point is higher than calculated value and it should be cut. Negative sign indicates that it should be filled. The value is the fill-cut data value.

- Anytime you click " x " on the upper right screen to return to Pt No screen, you can input a new point and set out next point. Or click [List] to call up data stored in internal memory. If the point is new, system will recommends you to input its coordinate.

13.1.3 String Setout

After setting occupied point and backsight point, you can start string setting out
Example:

OPERATIONAL STEPS	KEY	DISPLAY
(1) In [Program] menu, click [Set Out], in the prompt menu click [Strings]	[Set Out] [Strings]	
(2)Input Chainage and String of the point to be set out, and click [Set Out]. System starts to search automatically. If the string is found, the first point of this string will be displayed. As shown in the right graph, input Target height, Click [Set Out]. ※1)	[Set Out]	
		Layout ${ }^{\text {a }}$
(3)Sight the prism center and click [Measure] to start measure. The setting out method is same as point setting out.	[Measure]	
(4) After setting out click [Enter] to quit. The system displays the second point of the string. Click [Set Out] to start setting out.	[Enter]	

[Note]: A fixed point data file can not be used in String Setout.

13.2 ROAD DESIGN AND LAYOUT

13.2.1 Define Horizontal Alignment

In [Roads] menu select [Define HZ AL]. To know how to calculate an alignment, see appendix B.

- Horizontal alignment consisted of following elements: start point, straight line, circular curve and transition curve. First define the start point.
Example:

The "Define HZ AL" displays current chainage and the bearing angle (the tangent line from the chainage) and the function key (For creating new line). System provides four functions: defining straight line, circular curve, transition curve, point. Select a function key, enter the detailed information of the chainage, the alignment elements will be created. Click [Save], the new chainage and bearing angle will be calculated automatically and the main alignment screen will be restored. Now other line style can be defined. Press ESC to exit current screen. To modify the element which entered in advance, you should enter the "Edit Alignment" option, the new elements can be added only in the end of the original alignment file.

Straight line

When the start point or other line style is well-defined, it allows you to define straight line. A straight line consists of bearing angle and distance; the distance value can not be minus.

Example:

OPERATIONAL STEPS	KEY	DISPLAY	

(2) Input the bearing and length of the straight line.	Input bearing and distance.	Define HZ AL	
		$\left[\begin{array}{ll}\text { State } & \\ \text { Type: } & \text { Chainage } \\ \text { Str.- } 2 & \text { Bearing }\end{array}\right.$	0.000
			$0^{\circ} 000^{\prime \prime}$
		$\begin{array}{ll} \text { Bearing } & 25.0000 \\ \text { Distance } & 48.42 \end{array}$	Straight
			Arc
			TRNS
			PT
			Load
			Save
(3) After inputting, click [Save] to	[Save]	Define HZ AL	\times
save the alignment data, and display		$\left[\begin{array}{ll}\text { State } & \\ \text { No. } 3 & \text { Chainage } \\ \text { Define } & \text { Bearing }\end{array}\right.$	48.420
the chainage of the end of the line			25000'00"
and its bearing.			Straight
- Then, you can define other arcs.			Arc
			TRNS
- When the straight line is in the			PT
midst of the alignment, the bearing			Load
of the straight line is calculated on			Save
the base of previous factors. To modify this bearing, you can input a new bearing manually.			

Circular Curve

Click [ARC] in the "Define HZ AL", the circular curve can be defined. Circular curve consists of Arc length and Radius. The rule of radius value: along the forward direction of the curve. When the curve rotates to right, the radius value is positive. When the curve rotates to left, the radius value is minus. The arc length can not be minus.

Example:

OPERATIONAL STEPS	KEY	DISPLAY	
(1)On the screen of input process, click [ARC]. The screen displays the factors of arc to be defined.	[ARC]	Define HZ AL \times	
		$\left[\begin{array}{ll}\text { State } & \\ \text { Type: } & \text { Chainage } \\ \text { Arc- } 3 & \text { Bearing }\end{array}\right.$	10999.000
			56\%47'00"
		Arc Length 0	Straight
			Arc
			TRNS
			PT
			Load
			Save
(2) Input radius and arc length.	Input radius and arc length.	Define HZ AL \times	
		$\left[\begin{array}{ll}\text { State } & \\ \text { Type: } & \text { Chainage } \\ \text { Arc- } 3 & \text { Bearing }\end{array}\right.$	48.420
			25000'00"
		$\begin{array}{ll} \hline \text { Radius } & 200 \\ \text { Arc Length } 23.141 \end{array}$	Straight
			Arc
			TRNS
			PT
			Load
			Save
(3) After inputting, click [Save] to save the data of this alignment.	[Save]	Define HZ AL \times	
		$\left[\begin{array}{ll}\text { State. } & \text { No. } 4 \\ \text { Define } & \text { Chainage } \\ \text { Bearing }\end{array}\right.$	71.561$31^{\circ} 37 \prime 45^{\prime \prime}$
			Straight
			Arc
			TRNS
			PT
			Load
			Save

Transition curve

Press [TRNS] key in the "Define $\mathrm{HZ} \mathrm{AL"} ,\mathrm{the} \mathrm{transition} \mathrm{curve} \mathrm{can} \mathrm{be} \mathrm{defined}$. curve consists of the minimum radius and arc length. The rule of radius value: along the forward direction of the curve. When the curve rotates to right, the radius value is positive. When the curve rotates to left, the radius value is minus. The arc length can not be minus.

OPERATIONAL STEPS	KEY	DISPLAY	
(1) On the screen of input process, click [TRNS], the screen will display factors of transition curve to be defined.	[TRNS]	Define HZ AL \times	
		$\left[\begin{array}{ll}\text { State- } & \\ \text { Type: } & \text { Chainage } \\ \text { TRNS-4 } & \text { Bearing }\end{array}\right.$	71.561
			31037'45'
		Arc Length 0	Straight
			Arc
			TRNS
			PT
			Load
			Save
(2) Input radius and arc length.	Input radius and arc length.	Define HZ AL \times	
		$\left[\begin{array}{ll}\text { State } & \\ \text { Type: } & \text { Chainage } \\ \text { TRNS- } 4 & \text { Bearing }\end{array}\right.$	71.561
			31037'45'
		$\begin{array}{ll} & \\ \text { Radius } & 100 \\ \text { arc Length } & \boxed{1000}\end{array}$	Straight
			Arc
			TRNS
			PT
			Load
			Save
(3) After inputting, click [Save] to save the data of this alignment.	[Save]	Define HZ AL $\quad \times$	
		$\left[\begin{array}{ll}\text { State } & \\ \text { No. } 5 & \text { Chainage } \\ \text { Define } & \text { Bearing }\end{array}\right.$	1071.561$318^{\circ} 06^{\prime} 29^{\prime \prime}$
			Straight
			Arc
			TRNS
			PT
			Load
			Save

PT (Point)

In "Define HZ AL" menu Click [PT], the point can be defined. A point element consists of coordinates, radius and clothoid parameter A1 and A2. Radius, A1 and A2 can not be minus. If radius is entered, an arc is inserted with the specified radius. If clothoid parameter A1 or A2 is entered, a clothoid is inserted between straight and arc with the specified length.
Example:

OPERATIONAL STEPS	KEY	DISPLAY	
(1) On the screen of input process, click [PT], the screen will display factors of point to be defined.	[PT]	Define HZ AL	
		$\left[\begin{array}{ll}\text { State } & \\ \text { Type: } & \text { Chainage } \\ \text { PT-5 } & \text { Bearing }\end{array}\right.$	1071.561
			318006'29"
		North 0 East 0 Radius 0 A1 0 A2 0 0	Straight
			Arc
			TRNS
			PT
			Load
			Save
(2) Input N, E, radius and A1, A2. You can also click [Load] to load coordinate data from the project.	Input coordinate radius, and arc factors.	Define Hz AL \times	
		$\left[\begin{array}{c}\text { State- } \\ \text { Type: } \\ \text { PT-5 }\end{array}\right.$	1071.561
		PT-5 Bearing	318006'29"
		1800	Straight
		$\text { East } \quad 2000$	Arc
		Radius 0	- TRNS
		0	PT
		A2 0	Load
			Save

| (3) After inputting, click [Save] to |
| :--- | :---: | :---: | :---: |
| save the data of this alignment. |

[NOTE]: When you want to enter A1, A2 from clothoid length L1, L2, the following equations are used:

$$
\begin{aligned}
& A_{1}=\sqrt{L_{1} \text { Radiu }} \\
& A_{2}=\sqrt{L_{2} \text { Radiu }}
\end{aligned}
$$

Any changes to the alignment must be done using the edit alignment option.

13.2.2 Edit Alignment

To edit the alignment select Edit HZ AL from the Roads menu.

$※$ 1) Start: Press this key to go to the start of the file.
End: Press this key to go to the end of the file.
Prev. : Press this key to display the previous point data.
Next : Press this key to display the previous point data.
Search: Press this key to search for data, after pressing this key, enter the required chainage and press [ENTER], the data for the chainage will be displayed.
[ESC]: Quit the screen.
It is possible to edit data and modify raw data by using above function keys. After entering the data to be modified, click any operation key on the screen key to record the modified data. To exit without saving data, press [ESC] key.

13.2.3 Define Vertical Alignment

A vertical curve consists of series of intersection points. The intersection point consists of a chainage, elevation and curve length. The start and end intersection points must be a zero curve length.

Chainage	1000	1300	1800	2300
Elevation	50	70	60	90
Curve length	0	300	300	0

Intersection points can be entered in any order. After entering a point data, click [Save] to save the point data and enter next one. Press [ESC] to exit without saving.

Example:

OPERATIONAL STEPS	KEY	DISPLAY
(1)In [Roads] menu click [Define VT AL] to enter into the defining vertical alignment function.	$\begin{aligned} & \text { [Define } \quad \text { VT } \\ & \text { AL] } \end{aligned}$	
		Standard Measurement Program
(2) Input chainage, elevation and Curve Length. Then click [Save]. The curve length of start and end point must be 0 .	Input chainage, elevation and Curve Length [Save]	
(3)The screen of defining vertical alignment of next point displays. Continue to input next data.		

13.2.4 Edit Vertical Alignment

To modify vertical alignment data, the operational steps are same as editing horizontal alignment data.

OPERATIONAL STEPS	KEY	DISPLAY
(1)In [Roads] menu click [Edit VT AL] to enter into defining vertical alignment screen.	[Edit VT AL]	Project Record Edit Program Project Info. Set Out
(2) The screen displays the first alignment data, search the data needs to be edited. ※1) A: Click Prev. /Next to find the alignment data needed to be edited. B: Click [Search], a dialog box pops up as right graph B. Input chainage and click [Search].		A: B:
(3)The specified chainage is found and displayed on the screen. Input new data.		

13.2.5 Alignment Setout

After setting road data, you can start setting out
For an alignment setout a horizontal alignment must have been uploaded from computer by using [Set Out] \rightarrow [Alignment].

- the vertical alignment is optional, but is required to compute cut and fill. The defining method is same as defining horizontal alignment.

Rule:
Offset left: the horizontal distance from the left stake point to the center line.
Offset right: the horizontal distance from the right stake point to the center line.
Elevation difference: Left (right) is the elevation difference between left (right) stake and the center line point.

Center line

Example:

Please set the occupied point and backsight azimuth firstly.

OPERATIONAL STEPS	KEY	DISPLAY		
(1) In Alignment Layout screen, enter the start chainage, increment, and the horizontal distance from side stake point to center line. To setout dig/fil data, the height difference is needed.			 Increment R.offset R. Ht Diff R LOFS +CHG Slope	
(2) After inputting, the center line setting out data of the start chainage displays on the lower screen.			Incremen R.offset R. Ht Diff LOFS + CHG Slope	
(3)Here stipulate: first set out point on center line, and then set out points on left/right chainage. $\begin{aligned} & \text { 1) }\end{aligned}$ Input prism height, and click [Set Out] to set out.			Req Turn Away \square Fd Right \square Cut Measure Coord	
(4)Sight the current prism, click [Measure] to start measure and calculate parameter difference between measuring point and setting out point.			ReqTurn Z Away Fd Right Cut Measure Coord	\times $17^{\prime} 15^{\prime \prime}$ 2.177 1.226 9.761 Mode Enter

$※$ 1) Press [LOFS] (or [ROFS]), corresponding chainage, offset, elevation difference will be displayed on the screen. The chainage and offset can be entered manually. If the offset is minus, the offset point is at the left side to center line.If the offset is positive, the offset point is at the right side to center line.

Explanation for the main setout screen:

LOFS: The key is use in setting out the left side stake. Press it to display the offset and the height difference of the left side stake.
ROFS: The key is use in setting out the right side stake. Press it to display the offset and the height difference of the right side stake.
+CHG: The key is use in increasing the chainage.
-CHG: The key is use in decreasing the chainage.
Slope: The key is used in slope set out.

13.2.6 Slope Setout

Slope setting-out can be performed as part of the Alignment setout option. Only after defining vertical alignment and horizontal alignment, it is possible to perform slope setting-out. In Alignment Layout menu click [Slope] to display slope layout.

Slope layout main menu:

The input cut/fil value is a ratio.

The left and right slopes may be entered for both cut and fill. Enter the required slopes using positive numbers for both cut and fill. The software selects the appropriate slope from the table depending on whether the situation is on the left or right and in excavation or fill.
Excavation or fill is determined by the estimated level at the offset of the hinge point. If the level is above the level of the hinge then the cut slope is used, otherwise the fill slope is used.

Example:

OPERATIONAL STEPS	KEY	DISPLAY
(1)Enter (select) the side chainage which needs to precede the slope layout.		
(2) Click [Slope] to start slope layout. After inputting ratio of dig (or fill) of Left and Right slope After inputting, select left or right slope to layout.	[Slope]	
(3) Enter into slope layout menu. Input the prism pole and sight a point near where it is estimated the slope will intercept and press [Measure] to take the first trial shot. The appropriate slope is selected from the data entered in the preceding step. The appropriate slope is selected from the data entered in the preceding step. The first intercept is computed assuming a horizontal surface at the level of the measured point. The error from measured point to calculated point will be displayed. The layout method of slope is same with point setting out. When the data which display in $[\rightarrow]$ and [\uparrow] is 0 , the setting out point is found.		

[Note]: 1) An intersection can not be computed if the ground surface passes through the hinge point.
2) The cut is not displayed because the cut at the computed point is zero.

13.2.7 Cross Section Setout

To set out design cross sections select X-Sect from the Set Out menu.

The cross section setout is similar to the alignment setout, the points are uploaded in chainage, offset and level format and a reference alignment must also exist.

X-Sects layout main menu

X-Section				
Chainage	Offset		Elevation	\wedge
0.000	-4.501		18.527	
0.000	-3.500		18.553	
0.000	0.000		18.658	
0.000	3.500		18.553	
0.000	5.501		18.493	
12.669	-4.501		18.029	
12.669	-3.500		18.059	
12.fifi	ก.กกก		18.164	
Chainage 0		Offset R.Ht	-4.501	Slope
Ht Diff	18.527		1.58	
LOFS	ROFS	+CHG	- -CHG	Layout

The screen displays cross section data imported to total station. About the method please refer to "10.2 DATA IMPORT".
Example:

※The Ht.Diff value is elevation value here. (Different to Horizontal Alignment Setting out)

[Note]:

1) Cross Section data can not be entered nor edited by manual input; it has to be copied into WIN total station.
OPERATIONAL STEPS:
(1) Create a new text file (.txt) on the computer and save it. See Appendix A for the format of cross section data.
(2) Copy the file to total station.
(3) In the total station, import the saved data to current project by "Data Import". See "10.2 Data Import".
2) You can use [LOFS]/[ROFS] to display appointed chainage. The sequence of the displayed data is according to the sequence in text file. Enter the data in the order of its offset values (from left to right), if chainages are the same.
3) When editing the cross section data, chainages should be in the order from little to much.

13.3 COGO

The COGO menu contains a number of coordinate geometry functions. (Fixed data can not be used in these functions.)
(1.) Intersection
(2.) 4-points intersections
(3.) Inverse
(4.) Area
(5.) Radiation
(6.) Missing line Measurement

13.3.1 Intersection

The coordinate for a point can be computed by the intersection of two known bearings.

OPERATIONAL STEPS	KEY	DISPLAY			
(1)Click [Cogo] in [Program] menu. And click [Intersection] in Cogo menu.	[Cogo] [Intersection]	Projec	Record Edit	Program	
		Inform	tion default ni	$\begin{aligned} & \hline \text { Set Out } \\ & \text { Roads }, \end{aligned}$	
		Meas D	Intersection	Cogo	
		Coord	4-Intersection	Traverse	
		Fixed	Inverse	B.Boards	
		OCc Pt:	Area	Tape Dim	
		Ss pt:1			
			Standard Measur	ement Program	

※1) PT: The number of intersection point.
Azimuth: The azimuth from occupied point to intersection point direction.
Distance: The distance from occupied point to intersection point.
$※ 2)$ To call up coordinate data from project, you can click [Load].
[NOTE]:
If intersection is not in the specified bearing, the software creates the intersection point backward.
The intersection point can not be saved, if the coordinates are not in the allowed range

13.3.2 4-Intersection

The coordinate for a point can be computed by the intersection of four known points.

Known data:
P1 First known point
P2 Second known point
P3 Third known point
P4 Fourth known point
a Line between P1 and P2
b Line between P3 and P4
Unknown data:
P5 Coordinates of the point

OPERATIONAL STEPS	KEY	DISPLAY
(1) In COGO menu click [4-Intersection].	[4-Intersection]	
(2)In the popped up dialog box enter the points used for 4-Intersection. If the entered PT doesn't exist in project, program will request you to enter coordinates. $※ 1)$		
(3)After inputting, click [Calc.], to calculate the coordinates of intersection point. If no intersection exists, "No Intersection!" will display. Input the point name and click [Enter]	[Calc.]	

(4)The data is saved and the display returns to standard survey main menu.		
※1) To call coordinate data from project, Click [Load].		

[NOTE]:

1) If there is no intersection point, the message "No Intersection" will be displayed.
2) If intersection is not in the specified bearing, the software creates the intersection point backward.
3) The intersection point can not be saved, if the coordinates are not in the allowed range.

13.3.3 Inverse

Example:

OPERATIONAL STEPS	KEY	DISPLAY
${ }^{(1) I n}$ COGO menu click [Inverse].	[Inverse]	
(2)Enter From PT and To PT. If the entered PT doesn't exist in project, program will request you to enter coordinates. ※1), ※2)		
(3)After inputting, click [Calc.], to calculate the coordinates $※ 3$)	[Calc.]	

(4)Press[ESC] to returns to standard survey main menu.	[ESC]	

※1) To call coordinate data from project, Click [Load].
$※ 2)$ From PT: Pt shows start from which point.
To PT: Pt shows finish at which point.

$※ 3)$ Azimuth: Azimuth from start point to end point.
HD: Distance between two points.
VD: Height difference between two points. Positive sign means start point is higher than end point while minus means lower.

13.3.4 Area

The points used to calculate area can be gained in two ways: use specified points or points with a common coding.

13.3.4.1 Area Using Specified Points

An area can be calculated by marking at least 3 points.
Example:

OPERATIONAL STEPS	KEY	DISPLAY
${ }^{1}$ In COGO menu click [Area].	[Area]	
(2) A dialog box pops up. Click "Marked Pt to Calculat" and click [Enter]. ※1)	[Enter]	 Standard Measurement Program
155		

13.3.4.2 Area Using Code

The area of a figure enclosed by points with a common coding can be computed. When recording points observe them in the correct sequence and give each point the same point code.

Example:

OPERATIONAL STEPS	KEY	DISPLAY
(1)In Area Option, click "One kind of Pt to calc", and click [Enter]. $※ 1)$	[Enter]	
(2)Input Code and String used for area. Click [Enter].		Project Record Edit Program Information In
(3) The program will search data which meets the requirement and calculate the area.		
(4)Click [Enter] to quit and return to Standard Survey Main Menu.	[Enter]	

Usually $\left(m^{2}\right)$ or $\left(f t^{2}\right)$ is used as a unit for an area. If the area is larger than $10000 \mathrm{~m} . \mathrm{sq}$ then the unit is changed to Ha (hectare). The unit is changed to AC (acre) if the closed area is 43560 ft .sq or more.
[NOTE]:
(1.) Area is not calculated correctly if enclosed lines cross each other.
(2.) If less than 3 points are found which have been marked the software will show the message "3 PTS required".
(3.) The data in fixed points file can not be used in this program.

13.3.5 Missing Line Measurement

This function can be used to calculate the length of a line by measuring the start and end point of this line.

You should set the occupied points and backsight azimuth before the measurement.

Example:

[Note]: dVd is defined as the height of the second point minus the height of the first point. Due to this reason dVd can be negative. dSd is defined as the length of the missing line.
dHd is defined as the length of the projected missing line in the horizontal plane. dSd and dHd are always positive.

13.3.6 Radiate

The coordinate for a point can be computed by entering the Azimuth and Distance.

Example:

$※$ 1) To call coordinate data from project, Click [Load].
$※ 2$) Elevation value can not be calculated, only can be manually input, the results is stored in coordinates data files.

13.4 TRAVERSE ADJUSTMENT

The Bowditch (compass rule) adjustment method is used to adjust a recorded traverse. The traverse is defined by entering start and end points and the intermediate points are determined from foresight observations. The coordinates for the start and end points must be known.

- If the coordinates of the initial BKS PT are known, the software calculates the bearing from the point data.
- The foresight option must be used to record observations to the traverse points and the observed end point must have a different point number to the known point.
- To adjust angles the end point must be occupied and a known point observed to measure the closing angle. The point number used for this observation must be different from the known point too.

Start Pt: 111 BKS Pt: 110
End Pt: 116
Close Pt: 117
Known Pt: 1101119916917

Example:

1. Measurement

2. Adjustment:

K@LIDA

If the closure point is measured: (The step 1,2 are same as above).

OPERATIONAL STEPS	KEY	DISPLAY
(3) After entering Start Pt , system prompts to enter End Pt (Measured Point number) and the known Pt , these two points should be different.		
(4)Enter Close Pt (Measured Point number) and the known Pt , these two points should be different too.		

13.5 BATTER BOARDS

When setting out points, particularly for building plots, it is usually necessary to mark a point with an offset so that the point can be re-established after work has been carried out in the work area. In this case batter board can be used: the intersection point (of a batter board and the line that connects two points that have to be set out) can be marked. Later, the intersection points are used by pulling a string line between these points. In this way, the required points can be reconstructed.

-There are two ways to proceed:

First way is using two sides of the batterboard. The user is advised to use this method in case high accuracy is required, control of the measurements is required or one batterboard is used to mark more than one intersection point. Refer to Chapter 13.5.1.

Second way is using one side of the batterboard. The user is advised to use this method in case a quick method is required. Refer to Chapter 13.5.2.

13.5.1 Method 1: Batter board using two sides

The two sides of batterboard should be measured now. Put the reflector above one side of the batterboard, enter a number for this point (BB point 2) and press Enter.
Operating Procedure:
(A) Two setout point (S1 and S2) are selected and one side of the batterboard is measured (BB1).
(B) The other side of the batterboard is measured (BB2)。The intersection point of the batterboard and the line connecting S1 and S2 is calculated. Next, the distance (D1) from BB1 to intersection point and the distance (D2) from BB2 to intersection point are calculated.

Example:

※The setout of this intersection point is identical to Point Setout, which is discussed in paragraph 13.1.3, except for two differences.

1) Automatically the intersection point is chosen for setting out.
2) CUT is not shown at the screen.

NOTE:

1) If the intersection point is not on the batterboard, the message "Point Not on Batterboard!" is shown on the screen.
2) In case a batterboard is used twice and its position hasn't changed, it is not necessary to re-measure the sides of the batterboard. Use the same number for the sides of the batterboard.
3) The error message "Invalid value ! "is shown if the batterboard and the line connecting the two setout points are parallel.
4) The coordinates of the calculated intersection point are recorded in the coordinate file. The number of this intersection point is, compared to the highest existing number, incremented by one.

13.5.2 Method 2: Batterboards using one side

Click [S.O.] in case you want to measure only one side of the batterboards.

Procedure

Operating procedure:

(A) Two setout points (S1 and S2) are selected and one side of the batterboard is measured (BB 1). An approximate distance D1 is shown.
(B) The position of the pole is changed according to the value of D1 and a measurement is performed. The distance D1 is now precise. The process has to be repeated until D equals zero to find the intersection point.
Example:

OPERATIONAL STEPS	KEY	DISPLAY
		Project Record Edit Program \times
(1)After entering Setout Points and Board1 click [S.O].		
(2)The screen displays as right. Dist. indicates the distance from the pole to the intersection point. Move the pole along with the batter board and click [Measure]. [Dist.] now indicates a precise distance. The intersection point is found when Dist. equals zero.		

NOTE :

1) After the first side of the Batter board has been measured and [S.O.] has been selected, it is assumed that the orientation of the batter board is perpendicular to
the line connecting the two setout points. The distance D1 is calculated using this assumption. Next a second point on the batter board is measured. From now on the distance D1 will be calculated using the correct orientation of the batterboard.D1 will now be more precise.
2) The error message 'Invalid value 'is shown if the batter board and the line connecting the two setout points are parallel.
3) The coordinates of the calculated intersection point are recorded in the coordinate file. The number of this intersection point is, compared to the highest existing number, incremented buy one.

13.6 TAPE DIMENSIONS

Tape dimension is a program which integrates surveying using a total station and a measuring tape. This program is especially useful when a quick survey of an object is required. It is assumed that all angles of this object are rectangular.

Example: measure an object by TAPE DIM. Two corners of the object are measured using the total station and a reference line is defined. Next the other sides of the object are measured using a measuring tape. When the last side is measured, the closing error will be shown.
Example:

OPERATIONAL STEPS	KEY	DISPLAY
(1)In [Program] menu, Click [Tape Dim].		
(2)Enter PT A (Start PT) and PT B (End PT) on Re. line and click [Enter]. A If the point exists in project, then the Re. Line is defined.		A:
B If the point doesn't exist in project, the SS Measurement dialog box pops up. Measure and record this point.		B:
(3) After defining Re. Line, click [Enter], the screen displays as right.		Tape Dim Measure Ref. Line Pt A 223 Pt B 224 Measure End Pt 224 Dist 0 Pt 10088 Code \square Sketch map

(4) The reference line is defined, now use a tape to measure the line which perpendicular to the reference line, and start from End PT of reference line. First select direction in which the straight line proceeds and enter Dist, PT and Code, and click [Enter]. The line is defined and displayed. If the line is at the left hand side, press [Left] key. If the line is at the right hand side of reference line, press [Right] key. $\neq 1), ~ ※ 2$)	A: Left				
	Tape Dim Measure \times				
	$\left[\begin{array}{ll}\text { Ref. } \text { Line } \\ \text { Pt A } & 223 \\ \text { Pt B } & 224\end{array}\right]$	ketch	\square		
	$\begin{cases}\text { Measure } \\ \text { End Pt } & \multicolumn{1}{l}{1000} \\ \text { L Dist } & 100 \\$\cline { 2 - 3 } & 100\end{cases} & & \hline &Pt 1001 & Left & Right \hline & \multicolumn{3}{\|l	}{B: Right} \hline & \multicolumn{3}{\|l	}{Tape Dim Measure \times}		
	$\left[\begin{array}{ll}\text { Ref. } & \text { Line } \\ \text { Pt A } & 223 \\ \text { Pt B } & 222\end{array}\right]$	ketch	\square		
	$\left[\begin{array}{l}\text { Measure } \\ \text { End Pt } \\ \\ \\ \text { R Di0d }\end{array}\right.$				
	Code	End	Enter		
	Tape Dim Measure				
	$\left[\begin{array}{ll}\text { Ref. } & \text { Line } \\ \text { Pt A } & 223 \\ \text { Pt B } & 224\end{array}\right]$	ketch	\square		
	$\left[\begin{array}{l}\text { Measure } \\ \text { End Pt } \\ \\ \\ 8000\end{array}\right.$		5		
	$\begin{array}{lll}\text { Pt } & 10092\end{array}$	Left	Right		
	Code	End	Enter		
(6) After measuring the last point, click [End], the screen displays the misclose.	Tape Dim Measure \times				
	$\left[\begin{array}{lll}\text { Ref. } & \text { Line } \\ & \\ \text { Pt A } & 223 & \\ \text { Pt B } & 224 & \text { Tape Di }\end{array}\right.$		\square		
	$\begin{array}{ll} \text { R Dist } & 800 \\ \text { Pt } & 10092 \\ \hline \end{array}$	Left	Right		
	Code \square	End	Enter		
(7)Click [OK], the display returns to standard survey main menu.					

※1) stipulation of Left, Right: Along with extending direction of straight line, turn left is Left.
※2)Inputting range of Dist: $0.001 \sim 1000$

There are two ways to return to the main menu :

1) Press [ESC] key in case you have measured an open polygon. All points defined are automatically stored.
2) Click [End] to quit in case you have measured a closed polygon. The closing error (the distance between the last point and the first reference point) will be displayed. Click [OK] key to store all points defined and to return to main menu.
NOTE :
The reference line and the lines defined by offsets are graphically shown only in case at least one offset has been entered.

14. SYSTEM SETTINGS

14.1 SETTING UNIT AND MEASURING PARAMETER 1, UNIT SETTING OPTIONS

Menu	Selecting Item	Contents
1. Ang. Unit	deg/gon/mil	Select degree $\left(360^{\circ}\right)$, gon (400 G) or mil (6400 M) for the measuring angle unit to be shown on the display
2. Dist.Unit	Meter/Int.Feet/U.S Feet	Select the distance measuring unit Meter, Int. Feet or U.S Feet.
3. Temp.Unit	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	Select the temperature unit for the atmospheric correction
4. Pres.Unit	$\mathrm{mmHg} / \mathrm{hpa} / \mathrm{inHg}$	Select the air pressure unit for the atmospheric correction.

2, MEASURING SETTINGS

Menu	Selecting Item	Contents
1. Min. Ang.	$1^{\prime \prime} / 5^{\prime \prime}$	Select the minimum angle reading $1^{\prime \prime}$ or $5^{\prime \prime} \circ$
2. V-0	Zenith/Level	Select the vertical angle reading for Zenith 0 or Horizontal 0.
3.Tilt	OFF/1axis/2axis	Select the tilt sensor option for OFF, (1axis) vertical only or (2axis) vertical and horizontal
4. W-Corr.	$0 / 0.14 / 0.20$	Select the coefficient correction for refraction and earth curvature. Selections for the refraction coefficient are: OFF(No Correction) , $\mathrm{K}=0.14$ or $\mathrm{K}=0.20$

Correction for atmosphere refraction and the earth curvature

The instrument will automatically correct the effect of atmosphere refraction and the earth curvature when calculating the horizontal distance and the height differences.

The correction for atmosphere refraction and the earth curvature are done by the formulas as follows:

Corrected Horizontal Distance:

$\mathrm{D}=\mathrm{S} *\left[\cos \alpha+\sin \alpha^{*} \mathrm{~S} * \cos \alpha(\mathrm{~K}-2) / 2 \mathrm{Re}\right]$

Corrected Height Differentia:

$\mathrm{H}=\mathrm{S} *\left[\sin \alpha+\cos \alpha^{*} \mathrm{~S} * \cos \alpha(1-\mathrm{K}) / 2 \mathrm{Re}\right]$

If the correction of atmosphere refraction and the earth curvature is neglected, the calculation formula of horizontal distance and the height differentia are:
$\mathrm{D}=\mathrm{S} \cdot \cos \alpha$
$H=S \cdot \sin \alpha$

In formula:	K=0.14 Atmosphere Refraction Modulus
	Re=6370 km The Earth Curvature Radius
	$\alpha(\operatorname{or} \beta) \quad \cdots \cdots T^{\text {The }}$ Thertical Angle Calculated From Horizontal Plane
(Vertical Angle)	

S ….......................... Oblique Distance
NOTE: The atmosphere refraction modulus of this instrument has been set as: $\mathrm{K}=0.14$. The value of K can be $0.14,0.2$, or shut: (0 VALUE)

Example:

OPERATIONAL STEPS	KEY	DISPLAY	
(1)In the main menu click "System Setup".	[System Setup]	Function Help	四 \times
		$\text { Qise } \begin{gathered} \text { Basic } \\ \text { Survey } \end{gathered}$	WindowsCE
		Standard Survey	_- total station
		Mapping Genius	System Setup
		Engineering	5.x) Wince

(2)Choose options in the parameter setting.		System Set 0 OK \times
		Unit Set Measurement Set Atmospheric Parame $/$ /
		Angle Unit \qquad Gon Mil
		${ }^{5}$ Pressure Unit mmHg hPa inHg
		Save
(3)After setting, click [Save].	[Save]	System Set OK \times
		Unit Set Measurement Set Atmospheric Parame /,
		Angle Unit
		Unit Set 0 OK \times
		(i) Unit settings have been saved!
		Pressure Unit \qquad hPa O inHg
		Save
(4) Click [OK], the settings are saved.	[OK]	System Set 0 OK \times \|
		Unit Set Measurement Set Atmospheric Parame /,
		$\left[\begin{array}{ll}\text { Angle Unit } \\ \bigcirc \text { Degree } & \text { Gon } \\ \hline\end{array}\right.$
		${ }^{\text {Distance Unit }}$ \qquad Feet O us-Feet
		Temperature Unit \qquad $0^{\circ} \mathrm{C}$ © ${ }^{\circ}$
		Save
(5)To set Measurement setting, click "Measurement Set", repeat (2)~(4) to make the measurement setting. After setting, click " x ".		System Set 1 OK $\times 1$
		Unit Set Measurement Set Atmospheric Parame /-
		Angle min reading 1" O5"
		Vertical angle mode Zenith 0 Level 0
		$\left[\begin{array}{ll}\text { Tilt mode } \\ \text { O Off } & 1 \text {-axis } \\ \text { O-axis }\end{array}\right.$
		$\left[\begin{array}{ccc}\left.\begin{array}{\|cc}\text { Atmospheric reflection coefficient } \\ \bigcirc 0 & O \\ 0 & 0.14 \\ \hline\end{array}\right] \\ \hline\end{array}\right.$
		Save

14.2 SETTING ATMOSPHERE DATA AND PRISM CONSTANT

Atmospheric Parameters (ppm):

The speed of light in air is extremely fast. And it is not a constant, but changes with the temperature and pressure of atmosphere. Once atmosphere correction is set, this instrument can implement atmosphere correction automatically.
Even the instrument is powered off, the atmosphere correction value is still kept.

- You can set the atmosphere correction value under star key(\star) mode.
-The formula of atmosphere correction: (unit: meter))
$P P M=273.8-\quad 0.2900 \times$ pressure value (hPa) $1+0.00366 \times$ temperature value (${ }^{\circ} \mathrm{C}$)
If the pressure unit is mmHg :
$1 \mathrm{hPa}=0.75 \mathrm{mmHg}$
-When disregard atmosphere correction, set PPM value as 0 .
- Standard atmospheric condition of Total Station (i.e. the atmospheric condition that the atmosphere correction value of the instrument is 0):
Pressure: 1013 hPa
Temperature: $20^{\circ} \mathrm{C}$

Prism Constant

Since the constants of prisms manufactured by different companies are different, the corresponding prism constant must be set. Once the prism constant is set, it would be kept even if the machine is turned off.

Example:

OPERATIONAL STEPS	KEY	DISPLAY
(1) Click "Atmospheric Parameter" in System Set.		System Set 6 OK \times
		Measurement Set Atmospheric Parameters Con $1 / *$
		Save

15. CHECK AND ADJUSTMENT

This instrument has undergone a strict process of checking and adjustment, which ensures that it meets quality requirement. However, after long periods of transport or under a changing environment, there may be some influences on the internal structure. Therefore, before the instrument is used for the first time, or before precise surveys, user should launch check and adjustment introduced in this chapter to ensure the precision of the job.

15.1 PLATE VIAL

Check

Please refer to Chapter 3.2 "Leveling by Using Plate Vial"

Adjust

1. Adjust leveling screws, make plate bubble centered;
2. Rotate the instrument 180°; watch the offset of plate level;
3. Tweak adjustment screws (on the right of the plate vial) with the correction pin to make plate bubble to move half of the offset back;
4. Rotate the instrument 180°, check adjustment result;
5. Repeat the above steps until the plate level is centered in all directions.

15.2 CIRCULAR VIAL

Check:

No adjustment is required if the bubble of circular vial is in the center after checking and adjustment of the plate vial.

Adjust

1. Adjust circular bubble after plate bubble is centered.
2. Loosen the screw (one or two) opposite with bubble deflective direction;
3. Tighten the screw on the direction accordant deflective until circular bubble is

centered;

4. Adjust three adjustment screws for several times until circular bubble is centered;
5. The force power fixing three adjustment screws must be consistent when circular level is centered at last.

15.3 INCLINATION OF RETICLE

Check:

1. Sight object A through the telescope and lock the horizontal and vertical clamp screws.
2. Move object A to the edge of the field of view with the vertical tangent screw (point A^{\prime})
3. Adjustment is not necessary if object A moves along the vertical line of the reticle and point A^{\prime} still in the vertical line.
As illustrated, A^{\prime} offsets from the center to the cross hair tilts, then need to adjust the reticle.

Adjust

1. If the object A does not move along with the vertical line, firstly remove the eyepiece cover to expose the three or four reticle adjusting screws.
2. Loosen all the reticle adjusting screws uniformly with an adjusting pin. Rotate the reticle around the sight line and align the vertical line of the reticle with pointA'.
3. Tighten the reticle adjusting screws uniformly. Repeat the inspection and adjustment to see if the adjustment is correct.
4. Replace the eyepiece cover.

15.4 PERPENDICULARITY BETWEEN LINE OF SIGHT AND HORIZONTAL AXIS (2C)

Check

1. Set object A at about 100 meters away the same height as the instrument, and make the vertical angle with $\pm 3^{\circ}$. Then level and center the instrument and turn on the power
2. Sight object A in Facel and read the horizontal angle value. (e.g.: Horizontal angle L=10옹' $10^{\prime \prime}$).
3. Loosen the vertical and horizontal clamp screws and rotate the telescope. Sight object A in Reverse faceand read the horizontal angle value. (e.g.: Horizontal angle R= 190́13' $40^{\prime \prime}$).
4. $2 \mathrm{C}=\mathrm{L}-\mathrm{R} \pm 180^{\circ}=-30^{\prime \prime} \geq \pm 20$ ", adjustment is necessary.

Adjust

A. Electronic Adjustment Operation Steps:

OPERATIONAL STEPS	KEY	DISPLAY
(1)After leveling the instrument, in the main menu click [System Setup].		
(2) In the menu bar click to show Collimation as right.		

B. Optics Adjustment (professional maintenance man only)

1. Use the tangent screw to adjust the horizontal angle to the right reading which has been eliminated $\mathrm{C}, \mathrm{R}+\mathrm{C}=190^{\circ} 13^{\prime} 40^{\prime \prime}-15^{\prime \prime}=190^{\circ} 13^{\prime} 25^{\prime \prime}$
2. Take off the cover of the reticle between the eyepiece and focusing screw. Adjust the left and right adjusting screws by loosening one and tightening the other. Move the reticle to sight object A exactly.
3. Repeat inspection and adjustment until|2 $\mathrm{C} \mid<20$ ".
4. Replace the cover of the reticle.

Note: After adjustment, need to check the photoelectricity coaxiality.

15.5 VERTICAL INDEX DIFFERENCE COMPENSATION Check

1. Mount and level the instrument and make the telescope parallel with the line connecting the center of the instrument to any one of the screws. Lock the horizontal clamp screw.
2. After turning on the power, zero the vertical index. Lock the vertical clamp screw and the instrument should display the vertical angle value.
3. Rotate the vertical clamp screw slowly in either direction about 10 mm in circumference, and the error message " b " will appear. The vertical axis inclination has exceeded 3^{\prime} at this time and exceeds the designated compensation range.
4. Rotate the above screw to its original position, and the instrument display screen will show the vertical angle again, meaning that the vertical index difference compensation function is working.

Adjust

If the compensation function is not working, send the instrument back to the factory for repair.

15.6 ADJUSTMENT OF VERTICAL INDEX DIFFERENCE (I ANGLE) AND SETTING VERTICAL INDEX 0

Inspect the item after finishing the inspection and adjustment of items in 15.3 and 15.5.

Check

1. Power on after leveling the instrument. Collimate object A in Face I and read the Vertical angle value L.
2. Rotate the telescope. Sight object A in Face II and read the Vertical angle value R.
3. If the vertical angle is 0° in zenith, $i=\left(L+R-360^{\circ}\right) / 2$

If the vertical angle is 0° in horizon. $\mathrm{i}=\left(\mathrm{L}+\mathrm{R}-180^{\circ}\right) / 2$ or $\left(\mathrm{L}+\mathrm{R}-540^{\circ}\right) / 2$
4. If $|\mathrm{i}| \geq 10^{\prime \prime}$ should set the Vertical Angle 0 Datum again.

Adjust:

OPERATIONAL STEPS	KEY	DISPLAY
(1) After leveling the instrument, click System Setup in main menu.	[System Setup]	
(2) In the menu bar, click VO Adjustment. The screen diaplays as right. Sight the target precisely in Front face, click [Set].	Sight the target in Front face [Set]	
(3)Rotate the telescope and sight the same target precisely in Reverse face. Click [Set].	Sight prism in Reverse face [Set]	

Note: 1. Repeat the checking steps to measure the Index Error (i angle). If the Index Error cannot meet the requirement; user should check whether the three steps of the adjustment and the collimation are right. Then set again according to the requirement.
2. If Index Error still not meets the requirement after the repeated operation, the instrument should be returned to factory for inspection and repair.

- The vertical angle displayed in zero point setting has not been compensated or modified, only for reference during setting.

15.7 TRANSVERSE AXIS ERROR COMPENSATION ADJUSTMENT

As the transverse axis error only affects the angle of sight, it can be only confirmed through observing the target the height of which is obviously lower or higher than the instrument.

To avoid the influence of sight axis, user must have an associated adjustment before adjusting sight axis.

It is unnecessary to collimate the prism or the target plane to ascertain the transverse axis error. Therefore user is enabled to launch this adjustment at any time. Select a recognizable point which is rather far away from the instrument, and much higher or lower than the instrument. Make sure it can be precisely collimated twice.

OPERATIONAL STEPS	KEY	DISPLAY
(1) After leveling the instrument, click System Setup in main menu.	[System Setup]	System Set Unit Set Measurement Set
		Save
(2)In the menu bar click Horizontal Axis. The screen displays as right. Sight the target precisely in front face, Click [Set] 10 times.	Sight the prism in front face, Click [Set] 10 times	
(3)Rotate the telescope and sight the same target precisely in reverse face. Click [Set] 10 times.	sight the same target in reverse face Click [Set] 10 times	System Set Vo Adjustment Collimation Horizontal Axis Inst 4/ •
(4)After setting, the screen displays as right. Click [Set].	[Set]	 Result H Axis: -000'09" Input

15.8 OPTICAL PLUMMET

Check

1. Set the instrument on the tripod and place a piece of white paper with two crisscross lines on it right below the instrument.
2. Adjust the focus of the optical plummet and move the paper so that the intersection point of the lines on the paper comes to the center of the field of view.
3. Adjust the leveling screws so that the center mark of the optical plummet coincides with the intersection point of the cross on the paper.
4. Rotate the instrument around the vertical axis, and observe whether the center mark position coincides with the intersection point of the cross at every 90°.
5. If the center mark always coincides with intersection point, no adjustment is necessary.
Otherwise, the following adjustment is required.

Adjust

1. Take off the protective cover between the optical plummet eyepiece and focusing knob.
2. Fix the paper. Rotate the instrument and mark the point of the center of optical plummet which falls on the paper at every 90°. As illustrated: Point A, B, C, and D.
3. Draw lines that attach $A C$ and BD and mark the intersection point of the two lines as O.
4. Adjust the four adjusting screws of the optical plummet with an adjusting pin until
the center mark coincides with Point O .
5. Repeat the inspection and adjusting steps to make the instrument meets the requirements.
6. Replace the protective cover.

15.9 INSTRUMENT CONSTANT (K)

Instrument constant has been checked up and adjusted in the factory, $\mathrm{K}=0$. It seldom changes and it is suggested to check one or two times every year. The inspection should be made on the base line, also can be made according to the following method.
-Check

1. Mount and level the instrument on Point A at a plain field. Use the vertical hair to mark Point B and Point C with the distance of 50 m on the same line, and set the reflector accurately.
2. After setting temperature and air pressure, measure the horizontal distance of $A B$ and $A C$ accurately.
3. Set the instrument on Point B and center it accurately, measure the Horizontal Distance of BC accurately.
4. Then the Instrument Constant can be obtained:

$$
K=A C-(A B+B C)
$$

K should be near to 0 , If $|K|>5 \mathrm{~mm}$, the instrument should be strictly inspected in the standard baseline site, and adjusted according to the inspection value.

Adjust

If a strict inspection proves that the Instrument Constant K has changed and is not close to 0 . If the operator wants to adjust, should set Stadia Constant according to the Constant K

- Set the orientation via the Vertical Hair to maintain Point A, B, C on the same line precisely. There must be a fixed and clear centering mark on the ground of Point B
- Whether the prism center of Point B coincides with the Instrument Center is a significant step to inspect the accuracy. So on Point B the tripod or compatible tribrach should be used. It will decrease the difference.
-Input Instrument Constant:

OPERATIONAL STEPS	KEY	DISPLAY
(1)In [System Setup] menu, click Instrument Constant. The current Instrument Constant and Multiple Constant are displayed.	[Instrument Constant]	
(2)In Input New Values field enter new constant. You can enter Mul. Cons. if needed. Click [Set].	Input instrument constant [Set]	
(3)Click [OK].	[OK]	

[^1]
15.10 PARALLEL BETWEEN LINE OF SIGHT AND EMITTING PHOTOELECTRIC AXIS

Check:

1. Set the reflector 50m away from the instrument.
2. Collimate the center of the reflector prism with reticle.
3. Switch on the instrument, and enter into Distance Measurement Mode. Press [DIST] (or [AII]) to measure. Rotate the Horizontal Tangent Screw and Vertical Tangent Screw to launch electric collimation and make the light path of EDM unblocked. In the bright zone find the center of emitting photoelectric axis.
4. Check the center of reticle to coincide with the center of emitting photoelectric axis. If so, the instrument is proved eligible.

Adjustment:

If the center of reticle deviates from the center of emitting photoelectric axis, user should sent the instrument to professional repair department.

15.11 TRIBRACH LEVELING SCREW

If the leveling screw appears flexible, adjust the two adjusting screw in the leveling screw to tighten the screw appropriately.

15.12 RELATED PARTS FOR REFLECTOR

1. The Tribrach and Adapter for Reflector

The plate vial and optical plummet in the adapter and tribrach should be checked. Refer to Chapter 15.1 and 15.8 for more information.

2. Perpendicularity of the prism pole

As illustrated in Chapter 15.8, mark ' + ' on Point C, place the tine of the prism pole on the Point C and do not move during the inspection. Place the two feet tine of Bipod on the cross lines of Point E and F. Adjust the two legs " e ' and " f " to make the bubble on the prism pole centered.

Set and level the instrument on Point A near the cross. Sight the tine of Point C with the center of reticle, and fix the Horizontal Clamp Screw. Rotate the telescope upward to make D near the horizontal hair. Flex the prism pole Leg "e" to make the D
in the center of reticle. Then both Point C and D are on the central line of reticle.
Set the instrument on Point B to another cross lines. With the same way to flex the Leg " f " to make Point C and D on the central line of reticle.

Through the adjustment of the instrument on Point A and B, prism pole has been perpendicular. If the bubble offsets from the center, adjust the three screws under circular vial to make the bubble centered.

Check and adjust again until the bubble is in the center of the vial from both directions of the prism pole.

16. ACCESSORIES

Carrying Case	1pc
Main Body	1pc
Backup on-board Battery	1pc
Charger	1pc
Plumb	1pc
Correction Pin	2 pcs
Fur Brush	1pc
Screwdriver	1pc
Allen key	1pcs
Lens cloth	1pc
Dryer	1pc
Operation Manual	1pc
Stylus pen	1 pc
USB data cable	1 pc
```Reflector sheet (20x20, 30x30,40x40,60x60) (580R only )```	different size one for each

## 【APPENDIX-A】

## 1 EXPORT DATA FROM TOTAL STATION

After saving the data collected by total station by "Data Export" to appointed route, use U disk or synchronizing software (use Microsoft ActiveSync to synchronize total station and PC.) to copy to your computer, then you can view the data.

1.1 Raw Data Format	
WinCE	
(Identifier)	(Included information)
PROJECT	Project name, description of file saving path.
DATE	Date \& time
NAME	name of the surveyor
INST	Serial number of instrument
UNITS	(unit)meter/feet/US-feet, degree, gon, mil
SCALE	Grid factor, scale, and height
ATMOS	Temp ( $\left.{ }^{\circ} \mathrm{C}\right)$, press (hPa)
STN	point ID, instrument height, identifier of station PT
XYZ	X(E), Y(N), Z(H)
BKB	Point number, Backsight azimuth, Backsight angle
BS	Point number[, Target height]
FS	Point number, Target height, Point number coding[, String]
SS	Point number, Target height, Point numbercoding[, String]
CTL	control code[, point code 2[, String]](optional)
HV	HA(Horizontal angle), VA(Vertical angle)
SD	HA(Horizontal angle), VA(Vertical angle), SD(Slanting distance)
HD	HA(Horizontal angle), HD(horizontal distance), VD(Height
differentia)	note
NOTE	Point number, Target height, observation times
RES_OBS	

### 1.2 Coordinate Data Format

Point number, E, N, H, code
111,1.059,1.059,1.298,,
112,1.000,1.000,2.596,, 113,1.059,1.059,1.297,, 114,1.059,1.059,1.297,,

115,1.059,1.059,1.297,,
Additionally, the coordinate format of point to line program is:
PT, E, N, Height, code, string, start reference PT, end reference PT
3,29.145,31.367,100.632,PT,1,2
4,128.365,56.367,115.732,PT,1,2
110,29.364,31.526,100.904,PT,101,103
111,49.892,3.958,112.834,PT,101,103

## 2 IMPORT DATA TO TOTAL STATION

Data can be imported includes coordinate data, fixed point data, code data, horizontal alignment data, vertical alignment data and cross section data. Create a new text file(.txt) on the computer, after editing and saving the data, use $U$ disk or synchronizing software (use Microsoft ActiveSync to synchronize total station and PC.) to copy to the total station, and use "Data Import to import to current project.

Data editing formats are displayed as follows.

### 2.1 Coordinate Data/Fixed Point Data Format

You should edit the coordinate data format on the computer as follows:
Point number, E, N, Z, code
1,1000.000,1000.000,1000.000,STN
2,990.000,1010.000,100.000,STN
101,994.890,1000.964,100.113,STN
102,993.936,1007.799,100.800,STN
103,998.515,1009.639,100.426,STN
104,1002.068,1002.568,100.342,STN
1001,1004.729,997.649,100.1153,PT
1002,1003.702,990.838,100.799,PT
1003,7911.990,990.358,100.403,PT
1004,997.311,998.236,100.354,PT

### 2.2 Cross Section Data Format

Cross section data format editing on the computer is as follows:
Chainage, Offset, Height[, code]
0.000,-4.501,18.527
0.000,-3.500,18.553
0.000,0.000,18.658,CL01
0.000,3.500,18.553
0.000,5.501,18.493
12.669,-4.501,18.029
12.669,-3.500,18.059
12.669,-0.000,18.164,CL01
12.669,3.500,18.059
12.669,5.501,17.999

### 2.3 Point P Coding Format

The code files enclosed in code library, should assure that every line has a code, which includes entity number and layer name, etc. Every entity is ended by carriage return.

The edited coding format is as follows:
Code[, Entity[, Layer]]
TREE,1,VEG
FENCE,2,BDY
CL,2,CL
EP,2,ROAD
GUTTER,2,ROAD
PATH,2,PATH
DRAIN,2,DRAIN
BM,1,CONTROL
MH,1,DRAIN
GUS,1,UTILITY
WATER,2,UTILITY
LP,1,UTILITY
LIGHTS,1,UTILITY
ROCK,2,NS

- When there is no definition in code library, the default value for entity is " 1 ", and for layer is " 0 ".


### 2.4 Horizontal Line

The horizontal line is transmitted from computer to instrument through line element, including initial definition. It should be included in initial definition the number of the start stake and coordinate of this point. The line elements include point, straight, arc, and transition curve.
Each recorded format is:

## KEYWORD nnn,nnn[,nnn]

## Here:

START POIN
STRAIGHT
stake number, $\mathrm{E}, \mathrm{N}$

ARC azimuth, distance radius, arc length
SPIRAL
radius, length
PT
E, N[, A1, A2]
(A1, A2: LENGTH)

Example 1:
START 1000.000,01050.000,1100.000
STRAIGHT 25.0000,48.420
SPIRAL 20.000,20.000
ARC 20.000,23.141
SPIRAL 20.000,20.000
STRAIGHT 148.300,54.679

## Example 2:

START 1000.000,1050.000,1100.000
PT 1750.000,1300.000,100.000,80.800
PT 1400.000,1750.000,200
PT 1800.000,2000.000

### 2.5 Vertical Curve

Input vertical curve data from computer through typical point and stake number, the vertical curve data should include the height, curve length, and the curve length of start point and terminal point is zero.

Data format is:
Stake number, height, length
1000.000,50.000,0.000
1300.000,70.000,300.000
1800.000,70.000,300.000
2300.000,90.000,0.000

## 【APPENDIX-B】 CALCULATE ROAD ALIGNMENT

The road alignment stake-out program can stake out the alignment elements including straight, arc and transition curve.

## NOTE:

- Road alignment data can be uploaded from computer or can be entered manually. Transect data can only be uploaded from computer.
$\bullet$ Road alignment and transect data is managed by chainage.
- One job corresponds to one road alignment, you can use several jobs to create several alignments.


## 1 ROAD ALIGNMENT ELEMENTS

There are two ways to enter the alignment elements:

1) Download from PC.
2) Manually entered on the KTS-580(R) series.

How to enter the alignment data is explained below:

Alignment Element	Parameter
Straight	Bearing, Distance
Transition Curve	Radius, Length of Transition   Curve
Arc	Radius, Length of Arc
PT	N, E, radius, A1, A2

NOTE: When downloading from computer or selecting PT option, you do not have to calculate the Parameter.

$\begin{array}{rrrrrr}\text { Pt } & \text { North } & \text { East } & \text { Radius } & \text { Transition curve A1 } & \text { Transition curve A2 } \\ & \text { (N) } & \text { (E) } & \text { (R) } & & \end{array}$
BP $1100.000 \quad 1050.000$

IP1	1300.000	1750.000	100.000	80.000	80.000
IP2	1750.000	1400.000	200.000	0.000	0.000
EP	2000.000	1800.000			
Example:					

To enter the following data select DEF AL of ROADS in PROG menu:

CH	0
N	1100.000
E	1050.000

Press [ENT] and then click (PT) on the screen, Enter the following data:

N	1300.000
E	1750.000
R	100.000
A1	80.000
A2	80.000

Enter the following data in the above way:

N	1750.000
E	1400.000
R	200.000
A1	0.000
A2	0.000
N	2000.000
E	1800.000
R	0.000
A1	0.000
A2	0.000

The format of the data above transmitted to computer is as follows:
START 0.000,1050.000,1100.000 CRLF
PT 1750.000,1300.000,100.000,80.000,80.000 CRLF
PT 1400.000,1750.000,200.000,0.000,0.000 CRLF
PT 1800.000,1800.000,2000.000 CRLF

## 2 CALCULATION ROAD ALIGNMENT ELEMENTS

(1) Calculation of the length of transition curve

$$
L_{1.2}=\frac{A_{1.2}^{2}}{R}
$$

$L_{1.2}$ : Length of clothoid
$A_{12}$ : Parameter of clothoid
$R$ : Radius
$L_{1}=\frac{A_{1}^{2}}{R}=\frac{80^{2}}{100}=64 \mathrm{~m}$
$L_{2}=\frac{A_{2}^{2}}{R}=\frac{80^{2}}{100}=64 \mathrm{~m}$
(2) Calculation of Deflection Angle

$$
\tau=\frac{L^{2}}{2 A^{2}}
$$

$$
\tau_{1}=\frac{64^{2}}{2 \cdot 80^{2}}=0.32 \mathrm{rad} \quad \Rightarrow \quad \operatorname{deg} \quad \Rightarrow 0.32 \frac{180}{\pi}=18^{\circ} 20^{\prime} 06^{\prime \prime}
$$

$$
\therefore \quad \tau_{1}=-\tau_{2}
$$

(3) Calculation of transition coordinates

$$
\begin{aligned}
N & =A \cdot \sqrt{2 \tau}\left(1-\frac{\tau^{2}}{10}+\frac{\tau^{4}}{216}-\frac{\tau^{6}}{9360} \ldots\right) \\
E & =A \cdot \sqrt{2 \tau}\left(\frac{\tau}{3}-\frac{\tau^{3}}{42}+\frac{\tau^{5}}{1320}-\frac{\tau^{7}}{7560} \ldots\right) \\
N & =80 \cdot \sqrt{2 \cdot 0.32}\left(1-\frac{(0.32)^{2}}{10}+\frac{(0.32)^{4}}{216}-\frac{(0.32)^{6}}{9360} \ldots\right) \\
& =64\left(1-\frac{0.01024}{10}+\frac{0.01048}{216}-\frac{5 \pi .060107344}{9360}\right) \\
& =64(1-0.010 \geq \notin 4.00004-805050000) \\
& =64 * \mathbf{0 . 9 8 9 8 1}
\end{aligned}
$$

$$
=63.348
$$

Similarly, the value of E is:

$$
\begin{aligned}
E & =80 \cdot \sqrt{2 \cdot 0.32}\left(\frac{0.32}{3}-\frac{(0.32)^{3}}{42}+\frac{(0.32)^{5}}{1320}-\frac{(0.32)^{7}}{7560} \ldots .\right) \\
& =64(0.106666670 .00078019-0.0000025-0)
\end{aligned}
$$

$=6.777$
This example is symmetry spiral transition $\mathrm{N} 1=\mathrm{N} 2, \quad \mathrm{E} 1=\mathrm{E} 2$
(4)Calculation of shift value $\Delta R$
$\Delta R=E-R(1-\cos \tau)$

$$
\begin{gathered}
\Delta R=6.777-100\left(1-\cos 18^{\circ} 20^{\prime} 06^{\prime \prime}\right) \\
=1.700
\end{gathered}
$$

Symmetry spiral transition $\Delta R_{1}=\Delta R_{2}$
(5) Calculation of Spiral Transition coordinate

$$
N_{m}=N-R \text { s i in }=63.348-100 \sin 18^{\circ} 20^{\prime} \quad 06^{\prime \prime}=31.891
$$

Symmetry spiral transition $N_{m 1}=N_{m 2}$
(6) Calculation of Tangent Distance

$$
\begin{aligned}
& \quad D_{1}=R \tan \left(\frac{L A}{2}\right)+\Delta R_{2} \operatorname{cosec}(L A)-\Delta R_{1} \cot (L A)+N_{m 1} \\
& L A=+111^{\circ} 55^{\prime} 47^{\prime \prime}, \quad \operatorname{cosec}=\frac{1}{\mathrm{si} \mathrm{i}_{1}}, \quad \cot =\frac{1}{\tan } \\
& D_{1}=100^{*} \tan \left(111^{\circ} 55^{\prime} \quad 47^{\prime \prime} / 2\right)+1.7\left(1 / \sin 111^{\circ} 55^{\prime} \quad 47^{\prime \prime}\right) \\
& -1.7\left(1 / \tan 111^{\circ} 55^{\prime} 47^{\prime \prime}\right)+31.891 \\
& =148.06015+1.8326+0.6844+31.891 \\
& =182.468 \\
& \quad D_{1}=D_{2}
\end{aligned}
$$

(7) Calculation of the coordinate KA1

$$
\begin{aligned}
& N_{K 41}=N_{I P 1}-D_{1} \cdot \mathrm{coo} \mathscr{Q}_{1} \\
& E_{K 41}=E_{I P 1}-D_{1} \cdot \text { s i } \not \boldsymbol{Z}_{1}
\end{aligned}
$$

Bearing from BP to IP1 $\quad \Rightarrow \quad \alpha_{1}=74^{\circ} 03^{\prime} 16.6^{\prime \prime}$

$$
\begin{aligned}
N_{K 41} & =1300-182.468 * \cos 74^{\circ} 03^{\prime} 16.6^{\prime \prime}=1249.872 \mathrm{~m} \\
E_{K 41} & =1750-182.468 * \sin 74^{\circ} 03^{\prime} 16.6^{\prime \prime}=1574.553 \mathrm{~m}
\end{aligned}
$$

(8) Calculation of Arc Length

$$
\begin{aligned}
L & =R\left(L A-\tau_{1}+\tau_{2}\right) \\
& =R\left(111^{\circ} 55^{\prime} 47^{\prime \prime}-2 * 18^{\circ} 20^{\prime} 06^{\prime \prime}\right) \\
& =100\left(75^{\circ} 15^{\prime} 35^{\prime \prime} \frac{\pi}{180^{\circ}}\right) \\
& =131.353 \mathrm{~m}
\end{aligned}
$$

(9) Calculation of the coordinate KA2

$$
\begin{aligned}
& N_{K 42}=N_{I P 1}-D_{2} \cdot \mathrm{coo} \boldsymbol{\alpha}_{2} \\
& E_{K 42}=E_{I P 1}-D_{2} \cdot \sin \alpha_{2}
\end{aligned}
$$

Bearing from IP1 to IP2 $\quad \Rightarrow \quad \alpha_{2}=322^{\circ} 07^{\prime} 30.1^{\prime \prime}$
$N_{K 42}=1300-(-182.468) * \cos 322^{\circ} 07^{\prime} 30.1^{\prime \prime}=1444.032 \mathrm{~m}$
$E_{K 12}=1750-(-182.468)^{*} \sin 322^{\circ} 07^{\prime} 30.1^{\prime \prime}=1637.976 \mathrm{~m}$
(10) Calculation of coordinates BC, EC which is ARC (IP1,IP2,EP)

Arc length $C L=R \cdot I A$
$I A=95^{\circ} 52^{\prime} 11^{\prime \prime}$
$C L=200 * 95^{\circ} 52^{\prime} 11^{\prime \prime} * \frac{\pi}{180^{\circ}}=334.648 \mathrm{~m}$
$T L=R \cdot \tan \left(\frac{I A}{2}\right)=200^{*} \tan \left(95^{\circ} 52^{\prime} \quad 11^{\prime \prime} / 2\right)=221.615 \mathrm{~m}$

Each coordinates are computed :
$N_{B C}=N_{I P 2}-T L \cdot \cos \alpha_{2}$
$E_{B C}=E_{I P 2}-T L \cdot \sin \alpha_{2}$
$N_{E C}=N_{I P 2}-T L \cdot \cos \alpha_{3}$
$E_{E C}=E_{I P 2}-T L \cdot \sin \alpha_{3}$
here:
$\alpha_{2}$ (Bearing from IP1 to IP2) $=322^{\circ} 07^{\prime} 30.1^{\prime \prime}$
$\alpha_{3}$ (Bearing from IP2 to EP) $=57^{\circ} 59^{\prime} 40.6^{\prime \prime}$
$N_{B C}=1750-221.615^{*} \cos 322^{\circ} 07^{\prime} 30.1^{\prime \prime}=1575.068 \mathrm{~m}$
$E_{B C}=1400-221.615^{*} \sin 322^{\circ} 07^{\prime} 30.1^{\prime \prime}=1536.058 \mathrm{~m}$
$N_{E C}=1750-(-221.615)^{*} \cos 57^{\circ} 59^{\prime} 40.6^{\prime \prime}=1867.456 \mathrm{~m}$
$E_{E C}=1400-(-221.615)^{*} \sin 57^{\circ} 59^{\prime} 40.6^{\prime \prime}=1587.929 \mathrm{~m}$

The calculated results display as below :


The coordinates and the distance are calculated as below :

Compute the length of straight line
Straight line
BP.KA1 $=\sqrt{(1249.872-1100.000)^{2}+(1574.553-1050)^{2}}=545.543 \mathrm{~m}$
straight line KA2 $\cdot \mathrm{BC}=\sqrt{(1575.068-1444.032)^{2}+(1536.058-1637.976)^{2}}=166.005 \mathrm{~m}$
straight line
$E C \cdot E P=\sqrt{(2000-1867.456)^{2}+(1800-1587.929)^{2}}=250.084 \mathrm{~m}$

Start point coordinate (BP)
N 1100.000 m
E $\quad 1050.000 \mathrm{~m}$
straight line (between BP and KA1)
Bearing 740ㅇ' 16.6"
Distance 545.543 m
Transition clothoid (between KA1 and KE1)
Radius $\quad-100 \mathrm{~m}$ ("-"sign is turn left curve toward the end point)
Length 64 m
ARC (between KE1 and KE2)
Radius -100 m ("-" sign is turn left curve toward the end point)

Transition (Between KE2 and KA2)
Radius -100 m ("-" sign is turn left curve toward the end point)
Length 64 m
Straight line (between KA2 and BC)
Bearing $322^{\circ} 07^{\prime} 30.1^{\prime \prime}$
Distance $\quad 166.004 \mathrm{~m}$
Arc (between BC and EC)
Radius 200 (without sign is turn right curve toward the end point)
Length $\quad 334.648 \mathrm{~m}$
Straight line (between EC and EP)
Bearing $57^{\circ} 59^{\prime} 40.6^{\prime \prime}$
Distance 250.084 m

## Technical Specification

首Distance Measure Part

Type		KTS-582(R)	KTS-585(R)
Distance Measurement			
Max distance (Good weather)	Single prism	5.0Km	5.0Km
	None prism	300m	300m
Digisplay		Max: 9999999.999 m Min:1 mm	
Precision		With prism : $2+2 \mathrm{ppm}$Without prism: $5+3 \mathrm{ppm}$	
Measure time		Fine:2s, Quick measure:1.2s, Track:0.6s	
Atmospheric correction		Auto correction	
Reflection prismcorrection		Auto correction	
Angle Measurement			
Measuring method		Absolute code	
Raster diameter		79 mm	
Min display unit		1"/ 5"Selectable	
Accuracy		2"	5"
Detection method		Horizontal: Dual   Vertical : Dual	
Telescope			
Image		Erect	
Tube length		154mm	
Effective aperture		45mm, (EDM: 50mm)	
Magnification		$30 \times$	
Field of view		$1^{\circ} 30^{\prime}$	
Minimum focusingdistance		1 m	
Resolving power		3"	
Auto Compensator			
System		Dual axis Liquid-electric	
Work range		$\pm 3^{\prime}$	
Accuracy		1'	
Vial			


Plate vial	$30^{\prime \prime} / 2 \mathrm{~mm}$
Circular vial	$8^{\prime} / 2 \mathrm{~mm}$
Optical Plummet	Erect
Image	$3 \times$
Magnification	$0.5 \mathrm{~m} \sim \infty$
Focusing range	$5^{\circ}$
Field of view	LCD   Display   Type
On-board Battery	Rechargeable Ni-H battery
Power supply	DC 7.2 V
Voltage	Cons   Continuous operation   time   Size \& weight
Dimension	$200 \times 180 \times 350 \mathrm{~mm}$
Weight	6.0 kg


[^0]:    How to collimate the targets (For reference)
    (1) Point the telescope toward the light, rotate the eyepiece ring, focalize the telescope so that the crosshair is clearly observed (turn the eyepiece ring to you first and then to focus) .
    (2) Aim the target at the peak of triangle mark of the collimator. Keep a certain space between the collimator and yourself for collimation.
    (3) Focus the target with the focusing knob until the target is clearly seen and its center is right on the crosshair.

    If parallax exists between the crosshair and the target when viewing vertically or horizontally through the telescope, focusing is incorrect or diopter adjustment is poor. This adversely affects precision in measurement or survey. So please eliminate the parallax by focusing and using diopter adjustment carefully.

[^1]:    $※$ 1) Horizontal compensation adjust, vertical compensation and EDM adjusting: are set by the factory, please do not make any setting.

