## CONTENTS

PRECAUTIONS ..... 4
SAFETY GUIDE ..... 5
OPERATOR ..... 6
DECLARATION OF EXCEPTIONAL RESPONSIBILITY ..... 6

1. NAME OF EACH COMPONENT \& ITS FUNCTION ..... 8
1.1 Name of Each Component ..... 8
1.2 Operation Keys \& Functions ..... 10
1.3 Display ..... 11
1.4 Symbols ..... 12
2. PREPARATION FOR MEASUREMENT ..... 13
2.1 Mounting the Instrument ..... 13
2.2 Power On ..... 15
2.3 Remaining Battery Display ..... 15
2.4 Setting the record mode ..... 16
2.5 SD Card ..... 18
2.6 Menu ..... 18
2.7 SET. ..... 19
2.8 Inputting Characters ..... 19
2.9 Staff Collimation and Focus ..... 21
2.10 Surveying Note ..... 22
3. STANDARD MODE ..... 23
3.1 Measure ..... 23
3.2 S.O G.H (Stake out Ground Point) ..... 26
3.3 S.O H.D (Stake out Height Difference) ..... 28
3.4 S.O Dist(Stake out Distance) ..... 30
4. LEVELING ..... 33
4.1 Start Leveling ..... 33
4.2 End the Leveling Measurement on the Transition Point ..... 65
4.3 End the Leveling Measurement on the Bench Mark Point ..... 67
4.4 Continue Leveling ..... 69
5. OTHER FUNCTIONS ..... 70
5.1 Manually Inputting Data Key—[MANU] ..... 70
5.2 Display the Distance-[DIST] ..... 72
5.3 Inverse Staff Mode-[-] ..... 72
5.4 Record Data Search—[SRCH] ..... 73
6 HORIZOTAL ANGLE MEASUREMENTS ..... 77
6. FORMAR FLASH OR SD CARD ..... 79
7. DATA MANAGE ..... 82
8.1 Create Group ..... 84
8.2 Search Job ..... 85
8.3 Copy Job ..... 86
8.4 Delete Job ..... 88
8.5 Check the Capacity of Flash or SD Crad ..... 89
8.6 File Out. ..... 90
8. SET ..... 92
9.1 Set Menu ..... 92
9.2 Alter the Setting Mode ..... 95
9. BATTERY AND CHARGER ..... 97
10. ADJUSTMENT ..... 98
11.1 Method A ..... 98
11.2 Method B ..... 102
11. TRANSPORTATION, STORING AND CLEANING. ..... 102
12. SPECIFICATION ..... 104

## FOREWORDS

Congratulations on your purchasing the Digital Level DL-201/2007. In order to operate this instrument correctly, please read this user manual carefully and keep it well so as to refer to it easily in the future. Before use, please check the standard features and make sure all the equipments and accessories are available.

In order to facilitate reading, some pictures are simplified.

## PRECAUTIONS

Before using this instrument, please make sure that each function is running well.

- Avoid to make the surface of the digital staff as well as the joints between each section dirty or damaged, otherwise it will influence on the accuracy of reading and measurement. This is because the instrument needs to transfer the black \& white bar code to electric signal. That's why in case the digital staff is dirty, the accuracy would be descended, or even the instrument is not able to measure.
-Tripod
The digital level should be mounted on wooden tripod. Metal tripod is lighter and shack easily, which will affect the accuracy. Each leg of the tripod should be fixed well by screws.
- Tribrach

Please check the adjusting screw on the tribrach frequently, do make sure the central fixing screw is tightened.
-Packing well to avoid the instrument shaked
The digital level should be handled carefully to avoid shaking and crashing during transportation. Severe shaking would damage the measurement functions. When packing the instrument in the case, make sure the instrument is power off and take off the battery too.

- Carry the instrument carefully

When you need to move the instrument, you must grasp the lifting handle and take it off from the tripod.
-Avoid to expose the instrument in sun, rain or humid condition
Leaving the instrument in place of high temperature $\left(+50^{\circ} \mathrm{C}\right)$ would damage the instrument. Do not shoot the sun with the objective len; otherwise the spare parts inside the instrument may be damaged.

- Avoid the great change of temperature

A great change on instrument temperature would descend the measuring range. For example, when the instrument is moved out from a hot car, please leave the instrument to adapt to the surrounding temperature before use.
-Battery Inspection
Check the remaining battery before use.
-Digital Staff

Wear a glove when using a digital staff.

## SAFETY GUIDE

Serious injury or even death may occur if the following cautions are ignored.

- In case of explosion, do not place the instrument close to inflammable gas, liquid, or solid. Do not operate it in coal mine or dusty place.
-Do not disassemble or repair the instrument without authorization in case of dangers like fire, electric shock or damage to the instrument. Disassembling and maintenance are only implemented by manufacturer and its authorized service providers.
-Do not use the telescope to sight at the sun or sunlight that are refracted by reflectors like prisms in case of any hurt to the eyes.
-Do not operate the instrument with the digital staff near high voltage cables or transformers, in case of electric shock accident.
-Do not use the digital staff when under bad weather (thunder) in case of electric shock.
- Do not use chargers and batteries produced by a third party in case of fire.
-Do not use a broken power supply, wires, sockets and plugs in case of fire or electric shock.
- Do not use humid batteries or chargers in case of fire or electric shock.
-Do not place the batteries in fire or high-temperature environment in case of explosion or damage.
- Do not use the power supply mentioned in the manuals of non-manufacturers in case of fire or electric shock.
- Do not circuit the batteries in case of fire.
-Do not disassemble or assemble the instrument or operate the plug with wet hands in case of electric shock.
- Do not cover the charger when it is charging in case of fire.
-Do not touch the liquid leaked from the battery in case of hurt by the harmful chemicals. And please change the battery.
- Injury to persons or damage to goods may occur if the following cautions are not followed by operators.
- Harm: means hurt, burn, electric shock, etc.
-Damage: means serious damage caused to building, instrument or furniture.
- Overturning the instrument case may damage the instrument.
- Do not stand or sit on the case.
-Do not use the instrument case with broken belt, buckle, hinge, or lifting handle, in case that the instrument is damaged or it hurts the legs if the case falls.
-When mounting or delivering the instrument please be careful with the leg tips of the tripod.
-When mounting the instrument on the tripod, make sure the central fixing screw is tightened well to prevent the instrument from falling down.
-When mounting the instrument, make sure the screws of the tripod are tightened well.
-When moving the tripod, make sure the screws of the tripod are tightened well.


## OPERATOR

-This instrument is only operated by technician.
It is required that the operator should be a qualified surveyor. Before operation, inspection and calibration, operators should be acknowledged the safety guidence.

- Please wear necessary suits for protection (e.g. safety shoes, safety helmet).
- Do not place the instrument directly on the ground. If the operator has to leave the instrument alone, please cover the instrument with a nylon cover (if available).


## DECLARATION OF EXCEPTIONAL RESPONSIBILITY

-Users of this product should read the user manual thoroughly and implement periodical inspection to the performance of the instrument.

- Manufacturer and its dealers shall not be responsible for any direct or indirect consequences and profit loss resulted from destructive or intentional improper use.
- Manufacturer and its dealers shall not be responsible for any direct or indirect consequences and profit loss resulted from natural calamities (e.g. earthquake, hurricane, flood, etc.), fire, accidents, or fault of a third party.
- Manufacturer and its dealers shall not be responsible for failure to operate resulted from the fact that the data is changed or lost, or that operation is interfered.
- Manufacturer and its dealers shall not be responsible for any consequences and profit loss resulted from extra use without following the user manual.
- Manufacturer and its dealers shall not be responsible for any consequences and profit loss resulted from improper transportation or connecting with other products.


## 1. NAME OF EACH COMPONENT \& ITS FUNCTION

1.1 Name of Each Component


2 rough collimator
3 LCD display
4 keyboard panel
5 keys
6 eyepieces: use for adjusting the definition of the crosshair.
7 protecting cover of eyepieces: by releasing this cover, you can implement the mechanical adjustment of the reticle in order to correct the optical collimation line error.

8 data transfer port: connecting with PDA or computer.
9 reflector of circular vial
10 circular vial
11 tribrach
12 lifting handle
13 model label
14 objective lens
15 focusing hand wheel: use for focusing of digital staff.
16 power/measure key: use for instrument power ON/OFF, and measure.
17 horizontal tangent hand wheel
18 horizontal dial: use for setting the horizontal direction value of the collimating direction to 0 or other required values.

19 leveling screws of the tribrach

### 1.2 Operation Keys \& Functions

| key | name | function |
| :--- | :--- | :--- |
| POW/MEAS | Power <br> ON/OFF <br> Measure | Power ON/OFF, and start to measure. <br> Power ON: press once; <br> Power OFF: hold on for 2 seconds. |
| MENU | menu | Return to the menu list. <br> measure |
| DIST | select <br> Number <br> moving | In measurement status, press it to start measure <br> the distance and display the distance. |
| $\uparrow \downarrow$ | enter | Turn the page of menu list or data list. |


| MANU | Manually <br> input key | To input the data manually when the [MEAS] key <br> cannot be used to take measurement. |
| :--- | :--- | :--- |
| REP | Repeat <br> measuring <br> key | To repeat measuring the measured backsight or <br> foresight point in the leveling measurement |

### 1.3 Display

The display adopts dot matrix LCD, displaying 4 lines, with 20 characters in each.
LCD illumination: ON/OFF.

Press to turn ON or OFF the illumination. It can be set in instrument parameters too.

Setting Contrast
There're 9 degrees for the contrast. Please refer to parameter setting to know how to set the contrast.

Example:

| Menu $\quad$ 1/2 |
| :--- |
| Standard Mode |
| Leveling |
| Adjust |

Stardard Mode

| Menu $\quad 1 / 2$ |
| :--- |
| Standard Mode |
| Leveling |
| Adjust |

Leveling Mode

| Measure |  |
| :---: | :---: |
| Rod: |  |
| Dist: |  |
| N:3 | >>>>>>> |

Measuring
1.4 Symbols

| key | function | key | function |
| :---: | :--- | :--- | :--- |
| p | The current data has <br> been saved. | a/b | Several pages or menus are <br> available which can be selected <br> by [ $\mathbf{\Delta}][\mathbf{V}]$, <br> b: total pages, a: current page |
| B | Battery level | Inst Ht | Instrument height |
| BM\# | Bench Mark | CP\# | Changeover Point |
| I | Staff Inversion |  |  |

## 2. PREPARATION FOR MEASUREMENT

2.1 Mounting the Instrument

## Placing the Tripod.

Type E aluminum tripod with flat or dome head tripod is required.
(1) Adjust the three legs of the tripod to a proper length and tighten the fixing screws at the middle of the leg.
(2) Tighten the hexagonal nut on the head of the tripod in order to make the tripod legs not too loosen. Place the tripod on a certain point, expand the legs until the distance between each leg is about 1 m . First, fix a leg, and move the other 2 legs to make the head of the tripod approximately leveled. If necessary, adjust the length of the tripod legs.
(3) Trample the legs into the earth or fix it well on the ground.

Mount the Instrument on the Head of the Tripod.
Take out the instrument carefully and place it on the head of the tripod.
(1) Aim the tripod central screw to the center of the tribrach and tighten the screw until it is fixed at the head of the tripod.
(2) If you need to define an angle or a line through the horizontal dial, you should center the instrument precisely with a plummet.
(3) Center the circular bubble by adjusting the three leveling screws of the tribrach. If you are using a dome headed tripod, you should slightly loosen the tripod central screw and rotate the instrument round the head of the tripod until the circular bubble is centered, then tighten the screw.

Mounting the Instrument on a Certain Point (centering)
If you need to measure an angle or alignment, please precisely center the instrument at a certain point with the plummet.
(1) Hang the plummet at the plummet hook of the central screw of the tripod.
(2) Adjust the plummet line to a proper height.
(3) In case the instrument is not centered at the known point, you can move the instrument to that point without changing the position relationship between the tripod leg and its head. First, put the tripod on the known point approximately until the plummet is about 1 cm away from the point. Second, grasp two legs of the tripod
and adjust the tripod by the third leg until the head of tripod is leveled approximately with a proper height. Expand the legs of the tripod and fix it on the ground.
(4) Finally, observe the plummet and the hook and trample the legs into the ground.
(5) Slightly loosen the central screw of the tripod and move the instrument on the head until the plummet is centered at the known point. Tighten the tripod central screw.

Leveling the Instrument
Center the circular bubble by adjusting the tribrach screw.
First, put the tribrach as the below picture shown. Rotate 2 screws at the same time in opposite direction until the bubble moves to a position where the line between the bubble and screw $C$ is perpendicular to the line between screw $A$ and $B$ (refer to Picture A). Then rotate the screw $C$ to move the bubble to the center of the central circle. This procedure should be repeated for times until the bubble is centered on any directions. While leveling, remember the "Left Thumb Principle" which means that the moving direction of the bubble is the same as that of the left thumb. Do not rotate the leveling screw without thinking.


Notice: Do not touch the telescope during leveling.

## Collimating and Focusing

(1) Sight at the digital staff with the rough collimator.
(2) Rotate the eyepiece slowly until the image of the crosshair becomes clear.
(3) Rotate the focusing hand wheel until the image of digital staff becomes clear. Rotate the horizontal tangent to move the image of the staff to the center of the vertical hair of the crosshair.
(4) Observe through the eyepiece. Move your eye slightly up, down, left and right to check whether the relative position between the crosshair and the image of the staff is not changed. If not, please return to step 1.

Notice: Measurement accuracy may be influenced if the crosshair and focusing is not clear.

### 2.2 Power On

Press the power key (POW/MEAS).

### 2.3 Remaining Battery Display

The battery symbol indicates the remaining battery.
battery symbol


Full
$\square$
Sufficient
.
Half
0
Battery low. Please change the battery.
0
The power will be cut off soon. You need to change the battery.

### 2.4 Setting the record mode

In order to save the measurement data in the internal memory of the instrument, the data saving mode should be set as auto save before leveling measurement. The default setting is "OFF".

Flash:
Save the measured data (jobs) into the internal memory
-User can choose "Flash" in "Out Module" of "Condition" Setting if the data needs to be saved in the flash.

- The maximum storage of memory is about 20,000 .
- The maximum number of jobs is 500 .
- Folder can not be created in the memory.

SD Card:
The measured data can be saved directly into the SD card.

- User can choose "SD" in "Out Module" of "Condition" Setting if the data needs to be saved in the SD card.

Communication Port:
Connect DL-201 with external device by cable to receive the real-time measuring data.

User can only use Standard Measurement mode in this condition.

Off:
The measuring data will be displayed without storing and outputting, user can not use Leveling Measurement mode in this condition.

See next page for the example.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [Set] key to enter the setting mode on Menu screen, see detail in Chapter 9 "Set". | [SET] | Menu $1 / 2$ <br> Standard Mode  <br>   <br> Leveling  <br> Adjust  |
| 2. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] key to enter the "Out Module" in Condition setting. | [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] | Setting <br> Measurement <br> Condition <br> Instrument |
| 3.Press [ENT] key; | [ENT] | Condition $1 / 2$ <br> Point No.  <br> Wait Time  <br> Out Module  |
| 4. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] key to select. | [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] | Out Module <br> 1/2 <br> @FF <br> Flash <br> SD |
| 5. Press [ENT] to confirm. | [ENT] | Out Module $\quad 1 / 2$ <br> OFF <br> Flash <br> SD |

Note: When the output is in "Flash", the "F" mark will be displayed on the top right side of the screen; when the output is in SD card, the " $S$ " mark will be displayed; when the output is by USB, the "U" mark will be displayed; when the output is off, no mark will be displayed.

### 2.5 SD Card

User can use SD card for data storage, data copy and data search.
SD card function only can be used while the"Out Module" is set as "SD"
To format the SD card please refer to the Chapter 7 "Format Flash or SD Card"
For SD card management, please refer to the Chapter 8 "Data Manage"
Note: When the system is loading data from the SD card, do not remove the battery and SD card, otherwise, the saved data will be damaged, even it will influence on the memory storage; the defective SD card may damage the memory storage.

### 2.6 Menu

The menu includes following programs, the functions located in different menus which can't be always optional at the same time. (You may change the mode for different funcitons)

For example, when the "Out Module" is "Communication port" or "OFF", the Leveling Mode and Adjust Mode can not be carried out. If user enters the Leveling mode, the "Start Leveling" and "Continue Leveling" can not be chosen at the same time.

|  | $1{ }^{\text {st }}$ Menu | $2^{\text {nd }}$ Menu | $3{ }^{\text {rd }}$ Menu | $4^{\text {th }}$ Menu |
| :---: | :---: | :---: | :---: | :---: |
| Menu | Standart Mode | Measure |  |  |
|  |  | S.O G.H |  |  |
|  |  | S.O H.D |  |  |
|  |  | S.O Dist |  |  |
|  | Leveling | Start Leveling | BFFB |  |
|  |  | Continue Leve- | BBFF |  |
|  |  | End Leveling | BF/BIF |  |
|  |  |  | Outward/Return |  |
|  | Adjust | Method A |  |  |
|  |  | Method B |  |  |
|  | Data <br> manage | Make Group |  |  |
|  |  | Input Pt |  |  |
|  |  | Search | Flash / SD | Job / PN / BM\# |
|  |  | Copy Job | Flash / SD |  |
|  |  | Delete Job | Flash / SD |  |
|  |  | Check Capacity | Flash / SD |  |
|  |  | File Out | Flash / SD |  |
|  | Format |  | Flash / SD |  |

### 2.7 SET

"Set" key is used for setting the parameters. When carry out the precise measurement, it is recommended to use the continuous measuring mode which will help improve the accuracy by the average value; "Auto power off" is available, which means that the power will be cut off in 5 minutes without any operation; Data will be saved automatically in the Leveing mode while power off; The backight can be switched by using the

| SET | Measurement | Measure Mode | Single / N Times / Continuous |
| :---: | :---: | :---: | :---: |
|  |  | Minimum Reading | Srandard $1 \mathrm{~mm} /$ Precise 0.1 mm |
|  |  | Inverse Mode | Use / No Use |
|  |  | Unit | m(meter) / ft(US.ft) |
|  |  | Diff | B-F Dif/TolDil/StafDif |
|  | Condilion | Point No. | Increase / Descend |
|  |  | Wait Time | 1~9 Second |
|  |  | Out Module | OFF/Flash/SD/Communication port |
|  |  | Communication | Standard / User |
|  |  | Auto Off | 5 min / Off |
|  | Instrument | Contrast | 1~9 |
|  |  | Backlight | On/Off |
|  |  | Instrument Info |  |

### 2.8 Inputting Characters

When the "Out Module" is on, user can input the alphabets and numerals in the place that needs to be noted.

Lowercase letters and symbols are only available inputted into the Info, on other inputting status, only capital letter and number are available.

| Program | Character | Maximum |
| :--- | :--- | :--- |
| Group <br> (SD Card Only) | Only capital letter, number and "-" etc. | 8 Characters |
| Job | Only capital letter number and "-" etc. | 8 Characters |
| Info | Lowercase and capital letter, number <br> and all symbols | 16 Characters |

For example: Input "Tp\#7" in Infol

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [•] key to enter the capital letter inputting mode. <br> 2. Press [ $\mathbf{4}$ ] or [ $\boldsymbol{\square}$ ] key until the cursor flashes in the let er "T". | $[\bullet]$ $[4] \operatorname{lor}[]$ | Measure <br> Info\# 1 => <br> Measure Info\#1 ? $=>$ QRSTUYWXYZABCDEFGHIJ |
| 3. Press [ENT] key to enter "T" which will be displayed at the bottom of the line. | [ENT] | ```Measure Info#1 ? =>``` JKLMNOPQRSIUUWXYZABC |
| 4. Press [ $\bullet$ ] to input the lowercase lette. | [•] | Measure Info\# 1 ? $=>T$ <br> qrstuvwxyzabcdefghij |
| 5. Press [4] or [ $\boldsymbol{~}$ ] key until the cursor flashes in the letter " $p$ " and press[ENT]. | $\begin{gathered} {[\mathbf{4}] \mathrm{or}[\mathrm{D}]} \\ {[\text { ENT] }} \end{gathered}$ | Measure Info\# 1 ? $=>T$ <br> ghijklmnopqrstuvwxy |
|  |  | Measure <br> Info\# 1 ? $=>\mathrm{Tp}$ <br> fghijklmnopqrstuvwxy |


| 6. Press [•] to enter the symbol inputting mode. | [•] | $\begin{aligned} & \text { Measure } \\ & \text { Info\# 1? } \\ & =>\text { Tp } \\ & \text { ?@[_]^\{\|\}!"\#\$\%\&'(1)* } \end{aligned}$ |
| :---: | :---: | :---: |
| 7. Press [ 4] or [ ] key until the cursor flashes in the letter "\#", then press [ENT]. | $[\mathbf{4}] \text { or }[\text { l }]$ <br> [ENT] | $\begin{aligned} & \text { Measure } \\ & \text { Info\# 1? } \\ & =>\text { Tp } \\ & {[]^{\wedge}\{\mid\}!^{\prime \#} \text { \$ }^{2} \% \&^{\prime}()^{\star}+-} \end{aligned}$ |
| 8. Press [ESC] key to enter numeral inputting mode. | [ESC] | Measure <br> Info\# 1 ? $\begin{aligned} & =>\text { Tp\# } \\ & {[]^{\wedge}\{\mid\}!^{\# \#} \# \% \&^{\prime}()^{\star}+-} \end{aligned}$ |
| 9. Press numeric key [7], after confirming the inputted content, press [ENT] key. | $\begin{gathered} {[7]} \\ {[\text { ENT] }} \end{gathered}$ | $\begin{aligned} & \text { Measure } \\ & \text { Info\#1? } \\ & =>\text { Tp\#7 } \end{aligned}$ |

- Use [•] key to switch the input mode.

| Capital letter | Lowercase letter | Symbol |
| :---: | :---: | :---: |
| $\underline{A B C D}$ | $\underline{\text { abcd }}$ | $\underline{!" \# \$}$ |

-Available symbols to input are as follow:
!" \# \$\% \& ( ) * + . / : : ; < = > ? @ [_]^ $\backslash\{\mid\}$

### 2.9 Staff Collimation and Focus

(1) Focusing

Adjust the eyepiece focusing screw until the crosshair can be seen clearly. Then adjust the focusing screw until you can see the staff clearly through the objective
lens.
A precise focusing can shorten the measuring time and improve the accuracy. Measurement of high accuracy requests precise focusing as well as continuous measures.

## (2) Obstacles

Measurement can be implemented if the staff is blocked less than 30\%. Even if the crosshair center is blocked, as long as the field of view is blocked less than $30 \%$, measurement still can be implemented. However, in this case, the accuracy might be affected.
(3) Shadow

The surveying accuracy may be influenced if the staff is covered by shadow. In some cases, it is not possible to measure.
(4) Backlight

If the background of the staff is very bright, it will affect the contrast of the staff, the digital level might not be able to measure. You can cover something ahead of the objective len in order to reduce the background light invading to the len. When a strong light comes into the eyepiece, it might not be able to measure either. You can also cover the eyepiece in order to block the strong light from coming into the eyepiece.

When the sun is in a low position (for example, in the morning or at night fall), or if the sun light comes into the objective lens directly, it is suggested to block the sunlight with hands.

### 2.10 Surveying Note

In order to make full use of the functions of instrument, please pay attention to the following:
(1) Set up the staff in bright place. If possible, prolong the staff completely. If illumination is employed, it is suggested to illuminate the whole staff, otherwise the accuracy might be affected.
(2) The shortest distance between instrument and staff is 1.5 m .
(3) It will affect the accuracy when staff blocked. If the bar code on the staff is blocked by tree branches or leaves, the digital level might display error, or the accuracy decreased.
(4) If the place where the staff located darker than that of the eyepiece, an error might occur; you can block the light for the eyepiece with something proper.
(5) Deflection and pitching of the staff may affect the accuracy. During the measurement, make sure the staff is paralleled to the vertical hair of the reticle. The staff should be unfolded completely and fixed well. Make sure the joints of the staff are well and precise. Avoid to measure through the glass window.
(6) After a long storage or transportation, check and calibrate the digital and optical sight errors. Then adjust the circular vial and keep the optical parts clean.

## 3. STANDARD MODE

Standard Mode includes Measure, S.O G.H, S.O H.D and S.O Dist.

### 3.1 Measure

In Measure function, user can measureing the staff reading and distance without calculating the ground height. When the "Out Module" in "Condition Setting" is set as "Flash" or "SD", user needs to input job name and information. All Data will be saved in the flash or SD card.

For the measuring time, please refer to the "Measure Mode" of "Measurement Set"
[Example]: "Out Module" is "Flash", "Measure Mode" is 3 times

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [ENT] key. | [ENT] | Menu $1 / 2$ <br> Standard Mode Leveling <br> Adjust |
| 2. Press [ENT] key. | [ENT] | Standard Mode <br> 1/2 <br> Measure $\begin{aligned} & \text { S.O G.H } \\ & \text { S.O H.D } \end{aligned}$ |
| 3. Input the job name and press [ENT]. ※1), 3) | Input job name [ENT] | Measure <br> Job Name? $=>J 01$ |
| 4. Input measuring point name 12 and press [ENT]. $※ 1), 3)$ | Input measuring <br> point <br> [ENT] | Measure <br> Meas\# $=>12$ |
| 5. Input the notel-3 and press [ENT]. <br> ※1) ※3) | Input Info 1 <br> [ENT] | Measure <br> Info\# 1? $=>1$ |
| If user want to skip the note 2 and enter to step 6, it just needs to press [ENT] key. | Input Info 2 <br> [ENT] | Measure Info\#2? $=>1$ |


| 6. Collimate at the staff. | Input Info 3 <br> [ENT] | Measure <br> Info\#3? $=>1$ |
| :---: | :---: | :---: |
| 7. Press [MEAS] key. <br> Measuring for 3 times and the result will be displayed | [MEAS] Continuous [ESC] | Measure <br> Press[MEAS] to meas <br> Meas\#:12 |
| If the Measure Mode is Continuous, press [ESC], the last measuring result will be displayed for M seconds. |  | Measure <br> Rod: <br> Dist: $\mathrm{N}: 3 \quad \ggg \ggg>$ |
| 8. Press [REC] key to save the result. ※6). | [REC] | Measure $\quad 1 / 2$ Rod Ave:0.8263m Dist Ave:18.818m $\mathrm{N}: 3 \quad \delta: 0.04 \mathrm{~mm}$ |

※1) The maximum of job name is 8 characters of capital letter or number, and the maximum of note is 16 characters of lowercase and capital letter, number and symbols.
$※ 2$ ) The maximum of point name is 8 characters.
※3) When the "record mode" is off, the job name, point name and note can not be inputted.
-Relationship between measuring number ( Mn ) and point name( Pn )is as follow:

| Mn 11 | Pn | 1 | Mn | Pn | 1 | Mn |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pn | 2 |  | Pn | 2 |  |  | 2 |
|  | Pn | 3 |  | Pn | 3 |  | Pn | 3 |

※4) "Wait Time" can be set manually, please refer to "Set"
$※ 5)$ After measuring, the result will be displayed. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to switch the page. $※ 6)$ After being saved, the point name will increase or descend automatically.

After measuring, press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] key to switch the pages

|  | Distance display: |
| :---: | :---: |
| Measure 1/2 | N -times: average surveying value |
| Rod Ave:0.8263m | Continuous: last surveying value |
| Dist Ave: 18.818 m | N: Surveying time |
| $\mathrm{N}: 3 \quad$ \%:0.04mm | ঠ: Standard offset |
| Measure $2 / 2$ | measured point name |
| Meas\#:12 | point name |
| PN: 1 |  |

### 3.2 S.O G.H (Stake out Ground Point)

System can measure the height of corresponding point B by the height value $(\mathrm{Ha}+\Delta \mathrm{H})$, which is calculated by the height $(\mathrm{Ha})$ of the known point A . The measurement result will not be saved.

Please see the example in the next page.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [ENT] key. | [ENT] | Menu $\quad 1 / 2$ Standard Mode $\quad$ Leveling Adjust |
| 2. Press [ENT] key. | [ENT] | Standard Mode $1 / 2$ Measure S.O G.H S.O H.D |
| 3. Input the ground height of backsight point and press [ENT]. | Input BS G.H <br> [ENT] | $\begin{aligned} & \text { S.O G.H } \\ & \text { Input BS G.H } \\ & =23.000 \quad \mathrm{~m} \end{aligned}$ |
| 4. Input the ground height of stakeout point and press [ENT]. | Input SO G.H [ENT] | $\begin{aligned} & \text { S.O G.H } \\ & \text { Input SO G.H } \\ & =25.000 \quad \mathrm{~m} \end{aligned}$ |
| 5. Focus and sight at the backsight point, then press [MEAS]. | [MEAS] | S.O G.H <br> Meas BS Pt <br> Press[MEAS] to meas |
| 6. The measuring result of backsight point will be displayed, then press [ENT] key. | [ENT] | S.O G.H F  <br> B Rod: 1.512 m  <br> B Dist: 26.78 m  <br> N:3 $\delta: 0.4 \mathrm{~mm}$  |


| 7. Focus and sight at the stakeout point, then press [MEAS]. | [MEAS] | S.O G.H <br> Meas SO Pt <br> Press[MEAS] to meas |
| :---: | :---: | :---: |
| 8. The measuring value and stakeout value will be displayed. $\uparrow$ indicates that the staff is too low and it needs |  | $\begin{aligned} & \text { S.O G.H } \\ & \text { S Rod: } \quad 1.612 \mathrm{~m} \\ & \text { S.O: } \uparrow 2.100 \mathrm{~m} \\ & \text { N:3 } \quad \delta: 0.4 \mathrm{~mm} \end{aligned}$ |
| 9. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] key to switch to the page of sight distance and height of stakeout point, then press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | $\begin{array}{ll} \text { S.O G.H } \\ \text { S Dist: } & 26.78 \mathrm{~m} \\ \text { G.H: } & 22.90 \mathrm{~m} \end{array}$ |
| 10. Press [REP] to start a new stakeout job and start over backsight point surveying. Press [ENT] to continue stakeout measurement. Press [ESC] to exit. |  | S.O G.H <br> REP: New Meas <br> ENT: Continue <br> ESC: Exit |

### 3.3 S.O H.D (Stake out Height Difference)

According to the inputted height difference $\Delta H$ which calculated from known point $A$ and point $B$, system can measure out the corresponding point $B$, the measurement result will not be saved.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [ENT] key. | [ENT] | Standard Mode <br> Leveling <br> Adjust |
| 2. Press [ENT] key. | [ENT] | Standard Mode $\quad 1 / 2$  <br> Measure  <br> S.O G.H  <br> S.O H.D  |
| 3. Input height difference value and press [ENT]. | Input H.D <br> [ENT] | $\begin{aligned} & \text { S.O H.D } \\ & \text { Input SO H.D } \\ & =-1.000 \quad \mathrm{~m} \end{aligned}$ |
| 4. Focus and sight at the backsight point, then press [MEAS]. | [MEAS] | S.O H.D <br> Meas BS P $\dagger$ <br> Press[MEAS] to meas |
| 5. The measuring result of backsight point will be displayed, then press [ENT] key. | [ENT] | S.O H.D  F <br> B Rod: 1.512 m  <br> B Dist : 26.78 m  <br> N:3 $\delta: 0.4 \mathrm{~mm}$  |
| 6. Focus and sight at the stakeout point, then press [MEAS]. | [MEAS] | S.O H.D <br> Meas SO Pt <br> Press[MEAS] to meas |



### 3.4 S.O Dist(Stake out Distance)

According to the inputted distance Dab from known point A to point B, system can measure the corresponding point $B$. The measurement result will not be saved.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [ENT] key. | [ENT] | Menu $1 / 2$ <br> Standard Mode Leveling Adjust |
| 2. Press [ $\mathbf{\nabla}$ ] key. | [ $\mathbf{V}$ ] | Standard Mode 1/2 <br> Measure <br> S.O G.H <br> S.O H.D |
| 3. Press [ENT] key; | [ENT] | Standard Mode 2/2 <br> S.O Dist |
| 4. Input stakeout distance and press [ENT]; | Input S.O Dist [ENT] | S.O Dist Input SO Dist $=15.000 \mathrm{~m}$ |
| 5. Focus and sight at the stakeout point, then press [MEAS]. | [MEAS] | S.O Dist <br> Meas SO Pt <br> Press[MEAS] to meas |
| 6. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to switch page and display the rod reading and input value, then press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | $\begin{array}{lr} \text { S.O Dist } & \\ \text { S Dist: } \quad 26.78 \mathrm{~m} \\ \text { Dist: } \quad \leftarrow 11.78 \mathrm{~m} \end{array}$ |
| 7. Press [ENT] to continue | [ENT] or [ESC] | S.O Dist |


| stakeout measurement. <br> Press [ESC] to exit. |  | S Rod: 1.005 m <br> Input: 15.00 m |
| :--- | :--- | :--- |
|  |  | S.O Dist <br> ENT:Continue <br> ESC:Exit |

## 4. LEVELING

In Leveling Mode, "Out Module" should be set as "Flash" or "SD". In this section, we take "Flash" for example.
If user wants to save leveling measured data directly to SD card, the "Out Module" should be set as "SD".


### 4.1 Start Leveling

In "Start Leveling" function, user should input job name, pointname and height of benchmark, and then start to do the measuring.

Leveling $1: \mathrm{B} 1 \rightarrow \mathrm{~F} 1 \rightarrow \mathrm{~F} 2 \rightarrow \mathrm{~B} 2$
Leveling 2: $\mathrm{B} 1 \rightarrow \mathrm{~B} 2 \rightarrow \mathrm{~F} 1 \rightarrow \mathrm{~F} 2$
Leveling 3: $B \rightarrow F / B \rightarrow I \rightarrow F$
Leveling 4:Oułward/Return: $\mathrm{B} 1 \rightarrow \mathrm{~F} 1 \rightarrow \mathrm{~F} 2 \rightarrow \mathrm{~B} 2 / \mathrm{F} 1 \rightarrow \mathrm{~B} 1 \rightarrow \mathrm{~B} 2 \rightarrow \mathrm{~F} 2$

After measuring a station, user can switch off the instrument to save power, the instrument will automatically continue the next station measurement after power on. If the measurement do not finish while power off, the point needs to be remeasured after switching on the instrument.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [ENT] key. | [ENT] | Menu <br> Standard Mode <br> Leveling <br> Adjust |
| 2. Press [ENT] key. | [ENT] | Leveling <br> Start Leveling <br> Continue Leveling <br> End Leveling |
| 3. Input job name and press [ENT]. | Input Job Name [ENT] | Leveling Job Name? $=>\mathrm{JOl}$ |
| 4. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to choose Leveling Measurement mode and press [ENT]; | [ENT] | Leveling $\begin{aligned} & \mathrm{B} 1 \rightarrow \mathrm{~F} 1 \rightarrow \mathrm{~F} 2 \rightarrow \mathrm{~B} 2 \\ & \mathrm{~B} 1 \rightarrow \mathrm{~B} 2 \rightarrow \mathrm{~F} 1 \rightarrow \mathrm{~F} 2 \\ & \mathrm{~B} \rightarrow \mathrm{~F} / \mathrm{B} \rightarrow \mathrm{I} \rightarrow \mathrm{~F} \end{aligned}$ |
| 5. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to choose from Input BS Pt or Transfer(call up an existed basepoint height). ※1) Then press Enter. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | Leveling $1 / 2$ F <br> Input BS Pt   <br>    <br> Transfer   |
| 6. Input the point name of benchmark and press [Ent] | Input BM\# <br> [ENT] | Leveling <br> BM\#? $=>B O 1$ |


※1) The existed point data can be input in the menu $\rightarrow$ Data Manage $\rightarrow$ Input Pt.
※2) User can input three groups of notes, each notes has 16 characters of numbers or symbols

## Leveling: Measurement of backsight and foresight data

Leveling measurement $1: \mathrm{Bl} \rightarrow \mathrm{F} 1 \rightarrow \mathrm{~F} 2 \rightarrow \mathrm{~B} 2$

Please see the example next page.


| 6. Press [MEAS]. <br> After measuring, the average value will be displayed for M seconds. |  | Level BFFB $\quad 1 / 2$ FlRod Ave: 0.8260 m Fl Dist Ave: 3.914 m $\mathrm{~N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ |
| :---: | :---: | :---: |
| 7. Sight at the staff in the foresight point (Fr2) and press [MEAS]. | Sight at Fr2 <br> [MEAS] | Level BFFB <br> Fr2 <br> PN :PO1 <br> Press [MEAS] to meas |
| 8. After measuring, the average value will be displayed for M seconds. |  | Level BFFB $\quad 1 / 2$ <br> F2 Rod Ave:0.8260m <br> F2 Dist Ave: 3.913 m <br> $\mathrm{N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ |
| 9. Focus and sight at the staff in the backsight point (Bk2) and press [MEAS]. | Sight at Bk 2 <br> [MEAS] | Level BFFB <br> Bk2 <br> BM\#:BO1 <br> Press [MEAS] to meas |
| 10. If there are more backsight and foresight points, user can start from the step 2 to 9. |  | Level BFFB $\quad 1 / 2$ B2 Rod Ave:0.8261m B2 Dist Ave: 3.915 m $\mathrm{~N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ |

$※ 1)$ User can set the display time in the "Condition Setting".

After measuring, following data will be displayed.
Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] key to turn page. $※$
After measuring the backsight point $1(\mathrm{Bk} 1)$, press $[\mathbf{\Delta}]$ or $[\mathbf{\nabla}]$ to display the following interface:

|  | The following items are only displayed on the |
| :---: | :---: |
| Level BFFB 1/2 | N-times measuring mode: |
| B1 Rod Ave:0.8259m | Distance to the Backsight point |
| B1 Dist Ave : 3.914 m | $N$ times mode: Average value |
| $\mathrm{N}: 3 \quad \delta: 0.00 \mathrm{~mm}$ | Continuous mode: Last measuring value |
|  | N : Total measuring times |
|  | ס: Standard offset |
| Level BFFB 2/2 |  |
| BM\#:B01 | Backsight point name |

After measuring the foresight point 1(Fr 1), press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

| Level BFFB 1/2 | Disance to the foresight point |
| :---: | :---: |
| F1 Rod Ave:0.8260m | N times mode: Average value |
| F1 Dist Ave : 3.914 m | Continuous mode: Last measuring value |
| $\mathrm{N}: 3 \quad$ ठ:0.02mm | N : Total measuring times |
|  | ס: Standard offset |
| Level BFFB 2/2 <br> H.D 1: -0.0001m <br> Fr GHI:99.9999m <br> PN :PO1 |  |
|  | Height Difference from Bk1 to Fr1 |
|  | Ground height of forsight point |
|  |  |

After measuring the foresight point 2(Fr 2), press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ]to display the following interface:

|  | Disance to the foresight point |
| :---: | :---: |
| Level BFFB 1/2 | N times mode: Average value |
| F2 Rod Ave:0.8260m | Continuous mode: Last measuring value |
| F2 Dist Ave : 3.913 m | N : Total measuring times |
| $\mathrm{N}: 3 \quad$ ठ:0.02mm | ס: Standard offset |
| Level BFFB 2/2 |  |
| d : 0.000 m | d:backsight distance sum-foresight distance sum |
| इ:7.828m | $\Sigma:$ backsight distance sum+oresight distance sum |
| PN :PO1 | Foresight point name |

After measuring the backsight point 2(Bk 2), press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ]to display the following interface:

|  | Distance to the Backsight point |
| :---: | :---: |
| Level BFFB 1/3 | N times mode: Average value |
| B2 Rod Ave:0.8260m | Continuous mode: Last measuring value |
| B2 Dist Ave : 3.915 m | ס: Standard offset |
| $\mathrm{N}: 3 \quad$ ठ:0.02mm |  |
|  | E.V:Elevation offset difference $=(\mathrm{Bk} 1-\mathrm{Fr} 1)-(\mathrm{Bk} 2-\mathrm{Fr} 2)$ |
| Level BFFB 2/3 | d: backsight distance sum-foresight distance sum |
| E.V Limit: 0.0 mm | $\Sigma$ :backsight distance sum+foresight distance |
| d: $\quad 0.001 \mathrm{~m}$ | sum |
| $\Sigma: \quad 7.828 \mathrm{~m}$ |  |
|  | Height Difference from Bk2 to Fr2 |
| Level BFFB 3/3 | Ground height of foresight point |
| H.D 2:0.0000mm | Backsight point name |
| Fr GH2: 100.0000 m |  |
| BM\#:B01 |  |

Leveling measurement $2: \mathrm{Bl} \rightarrow \mathrm{B} 2 \rightarrow \mathrm{~F} 1 \rightarrow \mathrm{~F} 2$

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. After inputting the ground height of backsight point, the screen will display "Bk1 (backsight). If the previous step is "Start Leveling", screen will display BM (Bench Mark). |  | Level BBFF <br> Bk1 <br> BM\#:BO1 <br> Press [MEAS] to meas |
| 2. Sight at the staff in the backsight point (Bk1) and Press [MEAS] key. | Sight at Bk 1 <br> [MEAS] | Level BBFF <br> Bkl <br> BM\#:BO1 $\ggg \ggg \ggg \gg$ |
| 3. Focus and sight at the staff in the backsight point (BK2) and press [MEAS]. | Sight at Bk 2 <br> [MEAS] | Level BBFF <br> Bk2 <br> BM\#:BO1 <br> Press [MEAS] to meas |
| 4. Sight at the staff in the foresight point [Fr1]. <br> Meanwhile press [ESC] can change the foresight point name. | Sight at Frl <br> [MEAS] | Level BBFF <br> Frl <br> PN:PO1 <br> Press [MEAS] to meas |
| Press [MEAS] to measure. |  |  |
| 5. Sight at the staff in the foresight point (Fr2) and press [MEAS]. <br> 6. Move the station and sight at the staff in the backsight point (BKl), and then press [MEAS]. <br> If there are more backsight and | Sight at Fr2 <br> [MEAS] <br> Sight at Bk 1 <br> [MEAS] | Level BBFF <br> Fr2 <br> PN:PO1 <br> Press [MEAS] to meas |


| foresight points, please repeat <br> step 2 to 5. | Level BBFF <br> Bkl <br> PN:PO1 <br> Press [MEAS] to meas |
| :--- | :--- | :--- |

After measuring, the following data will be displayed.

Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] key to turn page $※$

After measuring the backsight point $1(B k 1)$, press [ $\mathbf{A}$ ] or $[\mathbf{\nabla}]$ to display the following interface:


After measuring the backsight point 2(Bk 2), press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ]to display the following interface:

| Level BBFF 1/2 | Distance to the Backsight point N times mode: Average value Continuous mode: Last measuring value $\delta$ : Standard offset |
| :---: | :---: |
| B2 Rod Ave:0.8260m |  |
| B2 Dist Ave:3.915m |  |
| $\mathrm{N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ |  |
| Level BBFF $2 / 2$ | Backsight point name |
| BM\#:B01 |  |

After measuring the foresight point $1(\mathrm{Fr} 1)$, press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

|  | Disance to the foresight point |
| :---: | :---: |
| Level BBFF 1/2 | $N$ times mode: Average value |
| F1 Rod Ave:0.8260m | Continuous mode: Last measuring value |
| F1 Dist Ave: 3.914 m | N : Total measuring times |
| $\mathrm{N}: 3 \quad$ ठ:0.02mm | $\delta$ : Standard offset |
| Level BBFF $2 / 2$ |  |
| H.D 1: -0.0001m | Height difference from Bk1 to Fr 1 |
| Fr GH1:99.9999m | Ground height of foresight point |
| PN :P01 |  |

After measuring the foresight point 2(Fr 2), press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

|  | Disance to the foresight point |
| :---: | :---: |
| Level BBFF 1/3 | $N$ times mode: Average value |
| F2 Rod Ave:0.8260m | Continuous mode: Last measuring value |
| F2 Dist Ave: 3.913 m | N : Total measuring times |
| $\mathrm{N}: 3 \quad$ ठ:0.02mm | ס: Standard offset |
| Level BBFF 2/3 | E.V:Elevation offset difference $=(\mathrm{Bk} 1-\mathrm{Fr} 1)-(\mathrm{Bk} 2-\mathrm{Fr} 2)$ |
| E.V Limit: 0.0 mm | d: backsight distance sum-foresight distance sum |
| d $: 0.000 \mathrm{~m}$ | $\Sigma$ :backsight distance sum+oresight distance sum |
| $\Sigma: 7.828 \mathrm{~m}$ | Foresight point name |
|  | Height Difference from Bk2 to Fr2 |
| Level BBFF 3/3 | Ground height of foresight point |
| H.D 2: 0.0000 m |  |
| Fr GH2:100.000m |  |
| PN :P01 |  |

Leveling measurement $3: B \rightarrow F / B \rightarrow I \rightarrow F$

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. After inputting the ground height of backsight point, the screen will display "Bkl (back- |  | Level BIF <br> Bk1 <br> BM \#:BO1 <br> Press [MEAS] to meas |
| 2. Sight at the staff in the backsight point (Bk1) and Press [MEAS] key. | Sight at Bk 1 <br> [MEAS] | Level BIF <br> Bk1 <br> BM\#:BO1 $\ggg \ggg \ggg \gg$ |


| 3. Press [IN/SO] ( Intermediate and Stake out) . | [ $\mathrm{N} / \mathrm{SO}$ ] | Level $\quad$ BIF  <br> BRod Ave: 0.8260 m  <br> BDist Ave: 3.913 m <br> $\mathrm{~N}: 3$ $\delta: 0.02 \mathrm{~mm}$ |
| :---: | :---: | :---: |
| 4. Chosse "Intermediate" and press [ENT]. | $[\mathbf{\Delta}] \text { or }[\mathbf{V}]$ <br> [ENT] | Level $\quad \mathrm{BIF}$ Frl $\mathrm{Pn} \quad: \mathrm{POl}$ Press [MEAS] to meas |
| 5. Input the point name of intermediate point and press [ENT]. | Point name [ENT] | Level BIF <br> InterMediate Stake Out |
| 6. Input the information and press [ENT]. | Info <br> [ENT] | InterMediate <br> PN ? $=>\text { TPO1_ }$ |
| 7. Focus and collimate the staff in the intermediate point. Press [MEAS] to measure. | [MEAS] | InterMediate Info\# 1 ? => |
| 8. Press [REC] to save data; press [ENT] if user wants to continue intermediate point measurement; press [ESC] to exit. | $\begin{aligned} & \text { [REC] } \\ & \text { [ESC] } \end{aligned}$ | InterMediate <br> PN :TPO1 <br> Press [MEAS] to meas |


| 9. Sight at the staff in the foresight point (Frl) and press [MEAS]. | Sight at Frl <br> [MEAS] | InterMediate <br> Rod Ave: 0.9030 m <br> Dist Ave: 17.008m <br> $\mathrm{N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ |
| :---: | :---: | :---: |
| 10. Focus and sight at the staff in the backsight point (Bk2) and press [MEAS]. | Sight at Bk 2 <br> [MEAS] | InterMediate <br> SaveData [REC] <br> Continue [ENT] <br> Exit <br> [ESC] |
| 11. Press $[\mathrm{IN} / \mathrm{SO}]$ to choose "Intermediate point and Stakeout measurement" | [ $\mathrm{N} / \mathrm{SO}$ ] | Level $\quad$ BIF <br> Fr1 <br> PN :PO1 <br> Press [MEAS] to meas |
| 12. Choose "Stake Out" and press [ENT]. | $[\mathbf{\Delta}] \text { or }[\mathbf{V}]$ <br> [ENT] | $\begin{aligned} & \text { Level BIF } \\ & \text { Bk2 } \\ & \text { PN :PO1 } \\ & \text { Press [MEAS] to meas } \end{aligned}$ |
| 13. Whether to load the ground height data, [ENT] for yes,[ESC] for no. | [ESC] | Level $\quad$ BIF  <br> Fr2  <br> PN $:$ PO2  <br> Press [MEAS] to meas  |
| 14. Input the ground height and press [ENT]. | [ENT] | Level BIF <br> InterMediate <br> Stake Out |
| 15. Input the point name of stakeout point and press [ENT]. | S.O point name [ENT] | Stake Out Load Data? Yes: [ENT] No: [ESC] |



After measuring the backsight point $1(B k 1)$, press [ $\mathbf{A}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

| Level BIF $1 / 2$ <br> BRod Ave:0.8260m  <br> BDist Ave:3.915m  <br> $\mathrm{N}: 3$ $\delta: 0.02 \mathrm{~mm}$ | Distance to the Backsight point <br> N times mode: Average value |
| :--- | :--- |
| Level BIF $2 / 2$  <br> PN: PO5  Continuous mode: Last measuring <br> value <br> $\delta: S t a n d a r d ~ m e a s u r e m e n t ~$ <br>    |  |

After measuring the foresight point 1(Fr 1), press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

| Level BIF 1/3 | Disance to the foresight point |
| :---: | :---: |
| F2Rod Ave:0.8260m | N times mode: Average value |
| F2Dist Ave: 3.913 m | Continuous mode: Last measuring value |
| $\mathrm{N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ | N : Total measuring times |
|  | $\bar{\delta}$ : Standard offset |
| Level BIF 2/3 |  |
| Fr GH: 100.000 m | Ground height of the foresight point |
| d : 0.000 m | d: backsight distance sum-foresight distance sum |
| $\Sigma: 7.828 \mathrm{~m}$ | $\Sigma:$ backsight distance sum + oresight distance sum |
| Level BIF 3/3 | Height Difference from Bk2 to Fr2 |
| H.D 2: 0.0000m | Foresight point name |
| PN :P01 |  |

After measuring the intermediate point, press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

| InterMediate 1/2 | Distance to intermediate point |
| :---: | :---: |
| Rod Ave:0.8260m | N times mode: Average value |
| Dist Ave:3.915m | Continuous mode: Last measuring value |
| $\mathrm{N}: 3 \quad$ ठ:0.02mm | ठ: Standard measurement |
| InterMediate 2/2 | Ground height of intermediate point |
| Int GH:2.008m | Point name of intermediate point (the point |
| PN :TP05 | name will increase or descend only after being saved.) |

After staking out, press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

|  | Measured value of the staff |
| :---: | :---: |
| Stake Out 1/2 | N times mode: Average value |
| S.O Rod: 0.8260 m | Continuous mode: Last measuring value |
| S.OH.D: $\uparrow 3.915 \mathrm{~m}$ | Height difference of staff upward or down- |
| $\mathrm{N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ | ward movement. |
|  | $\delta: S t a n d a r d$ measurement |
| Stake Out 2/2 |  |
| Dist: 12.008 m | Sight distance of stakeout point |
| S.O G.H0: 2.005 m | Ground height of stakeout point |

Leveling measurement 4: Outward/Return
$\mathrm{B} 1 \rightarrow \mathrm{Fl} \rightarrow \mathrm{F} 2 \rightarrow \mathrm{~B} 2 / \mathrm{F}|\rightarrow \mathrm{B}| \rightarrow \mathrm{B} 2 \rightarrow \mathrm{~F} 2$

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [MEAS] to measure the height of the backsight bench mark (BK1) and press [ENT]. | [MEAS] [ENT] | Outward BFFB 1 <br> Bk1 <br> BM \#:BO1 <br> Press [MEAS] to meas |
| 2. Press [MEAS] to measure the height of foresight point (Fr1) and press [ENT]. | [MEAS] [ENT] | Outward BFFB $\quad 1$ Frl PN:PO1 Press [MEAS] to meas |
| 3. Press [MEAS] to measure the height of foresight point (Fr2) and press [ENT]. | [MEAS] <br> [ENT] | Outward BFFB 1 <br> Fr2 <br> PN:PO1 <br> Press [MEAS] to meas |
| 4. Press [MEAS] to measure the height of the backsight bench mark (Bk2) and press [ENT]. | [MEAS] <br> [ENT] | Outward BFFB 1 <br> Bk2 <br> BM\#:BO1 <br> Press [MEAS] to meas |
| 5. Press [ENT] to continue Leveling measurement. | [ENT] | Outward BFFB 1 <br> ENT: Next Meas <br> REP: Repeat <br> MENU:End |


| 6. Press [MEAS] to measure the height of foresight point (Frl) and press [ENT]. | [MEAS] [ENT] | Outward FBBF 2 Fr1 PN:PO2 Press [MEAS] to meas |
| :---: | :---: | :---: |
| 7. Press [MEAS] to measure the height of backsight point (Bk1) and press [ENT]. | [MEAS] [ENT] | Outward FBBF 2 <br> Bk1 <br> PN:PO1 <br> Press [MEAS] to meas |
| 8. Press [MEAS] to measure the height of backsight point (Bk2) and press [ENT]. | [MEAS] [ENT] | Outward FBBF 2 <br> Bk2 <br> PN:PO1 <br> Press [MEAS] to meas |
| 9. Press [MEAS] to measure the height of foresight point (Fr2) and press [ENT]. | [MEAS] [ENT] | Outward FBBF 2 <br> Fr2 <br> PN:PO2 <br> Press [MEAS] to meas |
| 10. Press [ENT] to continue Leveling measurement. | [ENT] | Outward BFFB 2 <br> ENT: Next Meas <br> REP: Repeat <br> MENU:End |
| 11. Press [MEAS] to measure the height of the backsight bench mark (BK1) and press [ENT]. | [MEAS] [ENT] | Outward BFFB $\quad 3$ Bk1 PN:PO2 Press [MEAS] to meas |


| 12. Press [MENU] to end the Leveling measurement. | [MENU] | Outward FBBF 6 <br> ENT: Next Meas <br> REP: Repeat <br> MENU:End |
| :---: | :---: | :---: |
| 13. Press [ENT] to confirm | [ENT] | Outward FBBF 6 <br> Even station, <br> End meas? <br> Yes: [ENT] No: [ESC] |
| 14. Press [ $\mathbf{\Delta}$ ] [ $\mathbf{\nabla}]$ to choose "End Oułward". | $\begin{gathered} {[\mathbf{\Delta}][\mathbf{\nabla}]} \\ {[\mathrm{ENT}]} \end{gathered}$ | Outward FBBF 6 <br> CP Close <br> - End Outward |
| 15. Input PN (point name) and press [ENT] to confirm. | Input PN [ENT] | Outward FBBF 6 PN ? $=>_{-}$ |
| 16. Input the information and press [ENT] to confirm. | Input Info <br> [ENT] | Outward FBBF 6 Info\#1 $=>$ |
| 17. Press [ $\mathbf{\Delta}$ ] [ $\mathbf{V}$ ] to view the measurement data. | [ $\mathbf{\Delta}][\mathbf{V}]$ | Outward FBBF 6 1/2 <br> $\Delta h \quad C P 0.558 m$ <br> $\Delta h \Sigma C P 1.007 m$ <br> ED CP 52.00m |
| 18. Press [ENT] to continue the return measurement. | [ENT] | Outward FBBF 6 2/2 <br> ED BM 108.05m <br> G.H BM 5.007m |


| 19. Press [MEAS] to measure the height of backsight point (Bk1) and press [ENT]. | [MEAS] <br> [ENT] <br> [MEAS] | Return BFFB 1 <br> Bkl <br> BM\#:PO6 <br> Press [MEAS] to meas |
| :---: | :---: | :---: |
| (Fr2) and press [ENT]. | [MENU] | Return FBBF 2 <br> Fr2 <br> PN :P07 <br> Press [MEAS] to meas |
| 21. Press [MENU] to end the measurement. | [ENT] | Return FBBF 6 <br> ENT: Next Meas <br> REP: Repeat <br> MENU:End |
| 22. Press [ENT] to confirm. | [ $\mathbf{\Delta}][\mathbf{V}]$ | Return FBBF 6 <br> Even station, <br> End meas <br> Yes: [ENT] No: [ESC] |
| 23. Press $[\boldsymbol{\Delta}][\boldsymbol{\nabla}]$ to choose. <br> 24. Input the point name and | Point name [ENT] | Return FBBF 6 <br> CP Close <br> End Return |
|  | Info <br> [ENT] | Return FBBF 6 PN? $=>$ |
| 25. Input the note and press [ENT] to confirm. |  | Return FBBF 6 <br> Info\#1 => |



After measuring, following data will be displayed.
Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] key to switch the page
After measuring the backsight point $1(B k 1)$, press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

|  | The following items only display on the |
| :---: | :---: |
| Level BFFB 1/2 | N -times measuring mode: |
| B1Rod Ave:0.8259m | Distance to the Backsight point |
| B1Dist Ave: 3.914 m | N times mode: Average value |
| N:3 $\quad$ ठ:0.00mm | Continuous mode: Last measuring value |
|  | N : Total measuring times |
|  | ס: Standard offset |
| Level BFFB 2/2 |  |
| BM\#:B01 | Backsight point name |

After measuring the foresight point 1(Fr 1), press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

| Level BFFB 1/2 | Disance to the foresight point |
| :---: | :---: |
| F1Rod Ave:0.8260m | N times mode: Average value |
| F1 Dist Ave: 3.914m | Continuous mode: Last measuring value |
| $\mathrm{N}: 3 \quad$ ठ:0.02mm | N : Total measuring times |
|  | ס: Standard offset |
| Level BFFB 2/2 | Height difference from Bk 1 to Fr 1 |
| H.D 1: -0.0001m | Ground height of foresight point |
| Fr GH1:99.9999m |  |
| PN: P01 |  |

After measuring the foresight point 2(Fr 2), press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to display the following interface:

|  | Disance to the foresight point |
| :---: | :---: |
| Level BFFB 1/2 | $N$ times mode: Average value |
| F2Rod Ave:0.8260m | Continuous mode: Last measuring value |
| F2Dist Ave: 3.913 m | N : Total measuring times |
| $\mathrm{N}: 3 \quad$ ठ:0.02mm | ס: Standard offset |
| Level BFFB 2/2 | d: backsight distance sum-foresight distance sum |
| d $: 0.000 \mathrm{~m}$ | $\Sigma:$ backsight distance sum+oresight distance sum |
| ᄃ:7.828m | Point name of backsight point |
| PN :P01 |  |

After measuring the backsight point $2(B k 2)$, press $[\mathbf{\Delta}]$ or $[\mathbf{\nabla}]$ to display the following interface:

Level BFFB 1/3
B2Rod Ave:0.8260m
B2Dist Ave:3.915m
N:3 ठ:0.02mm

Level BFFB 2/3
E.V Limit:0.0mm
d: $\quad 0.001 \mathrm{~m}$
$\Sigma: \quad 7.828 \mathrm{~m}$

Level BFFB 3/3
H.D 2:0.0000mm

Fr GH2: 100.0000 m
BM\#:BO1

Distance to the Backsight point N times mode: Average value Continuous mode: Last measuring value ठ: Standard measurement
E.V: Elevation offset difference = (Bk1-Fr1)-(Bk2-Fr2)
d: backsight distance sum-foresight distance sum
$\Sigma$ :backsight distance sum+oresight distance sum
Foresight point name

Height difference from Bk2 to Fr2
Ground height of foresight point
Point name of backsight point

## Introduction to point name of leveling measurement

Point Name Modification
Before measuring the foresight point, the point name can be modified, please refer to the next chapter "Modify the Point Name"

Available Characters In Point Name
Numeral, capital letters and "-"can be used for point name which is up to 8 characters. The used point name can be reused.

Auto Decreasing and Increasing of the Point Name Please refer to the Chapter 9 "Set".

Auto Increase Stepsize

If the last character of the last inputted point name is numeral, the point name will add 1 automatically.

Auto Numeral Increasing
As if the point name is less than 8 characters, the number will move rightward and add 1 automatically.
Example: Last ABCD-99
Now ABCD-100
As if the point name is 8 chatacters, the number will not move.
Example: Last ABCDE-99
Now ABCDE-00

Auto Decreasing Stepsize
If the last character of the last inputted point name is numeral, the point name will descend 1 automatically.

When the last character is greater than 1 , the numeral character will descend 1 .
Example: Last ABC-02
Now ABC-01
Next ABC-00
When the last character is 0
Next character will be "9" and up to 8 characters.

| Example: Last | ABC-00 |
| ---: | :--- |
| Now | ABC-9999 |

Next ABC-9998
Note: When the point name is only numeral, then it will descend 1. As if the point name is 1, next one will be "99999999"。

## - Modify the Point Name

User can modify the point name before measuring the foresight point 1 (Frl)

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [ESC] before foresight measurement, the point name will move leftward. | [ESC] | Level BFFB <br> Fr1 <br> PN :PO1 <br> Press [MEAS] to meas |
| 2. Press [ESC] (C) to delete the character. | [ESC] <br> 3 times | Level BFFB <br> PN ? $=>P 01$ |
| 3. Input a new poing name ※1), 2) <br> [For example:2008]; | 2008 | Level BFFB <br> PN ? $=>$ |
| 4. Press [ENT]. | [ENT] | Level BFFB <br> PN ? $=>2008$ |
| $※ 1)$ The inputted alphabets or numerals can be up to 8 characters <br> ※2) The used point name can be reused in the same Leveling measurement. |  | Level BFFB <br> Fr1 <br> PN :2008 <br> Press [MEAS] to meas |

## Repeated Measuring key [REP]

[REP] key is used for recollecting the surveying data of backsight or foresight points when the measurement is incorrect. The saved data before repeating measuring will not influence on every calculating result.
[Leveling Measurement 1]

-After measuring the Bkl or Fr1, user can repeat the measurement form Bkl.
-After measuring the Fr2 or Bk2, user can repeat the measurement from Fr2 or Bk1.
[Leveling Measurement 2]


- After measuring the Bk1 or Bk2, user can repeat the measurement form Bk 1 .
-After measuring the Fr1 or Fr2, user can repeat the measurement from Fr1 or Bk1.

[Leveling Measurement 4]

-After measuring the Bk 1 or Fr 1 , user can repeat the measurement form Bk 1 .
-After measuring the Fr2 or Bk2, user can repeat the measurement from Fr2 or Bk1.

Fr 1
Bk 1
Bk 2
Fr 2
Next Bk1
[REP]
[REP]
[REP]
[REP]
-After measuring the Bk 1 or Fr 1 , user can repeat the measurement form Bk 1 .
-After measuring the Fr2 or Bk2, user can repeat the measurement from Fr2 or Bk1. Example:[ Leveling Measurement 1] After measuring Fr2, user can remeasure from Bk 1

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. When "Bk2" shows on the screen, press [REP]. | [REP] | Level BFFB <br> Bk2 <br> BM\#:BO1 <br> Press [MEAS] to meas |
| 2. Press [ENT] to confirm which measurement needs to be remeasured. | [ENT] | Level BFFB <br> Repeat meas FS2 ? <br> PN :POI <br> Yes: [ENT] No: [ESC] |
| 3. Sight at backsight point and press [MEAS] to remeasure. After that, the measured data will display for N second. | [MEAS] | Level BFFB <br> Repeat meas BSI ? <br> BM\#:BO1 <br> Yes: [ENT] No: [ESC] |
| 4. Sight at foresight point and press [MEAS] to remeasure. | Sight at backsight press [MEAS] | Level BFFB <br> Bk 1 <br> BM\#:BO1 <br> Press [MEAS] to meas |
| 5. Sight at Fr2 and press [MEAS] to remeasure. | Sight at foresight press [MEAS] | Level BFFB <br> Frl <br> PN :PO1 <br> Press [MEAS] to meas |


| 6 Sight at Forsight and press |
| :--- | :--- | :--- | :--- |
| [MEAS] | | Sight at fore- |
| :---: |
| sight press |
| [MEAS] |$\quad$| Level BFFB |
| :--- | :--- |
| Fr2 |
| PN :PO1 |
| Press [MEAS] to meas |

## Intermediate Measurement [IN/SO]

[IN/SO] key is used for collecting the separated intermediate point and sideshot point data in Leveling measurement.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. After measuring the backsight point, press [IN/SO]. | [ $\mathrm{N} / \mathrm{SO}$ ] | Level BFFB <br> Fr1 <br> PN :PO1 <br> Press [MEAS] to meas |
| 2. Press [ENT] to set the instrument to be ready for the intermediate point measurement. | [ENT] <br> Input PN <br> [ENT] | Level BFFB <br> InterMediate Stake Out |
| 3. Input the point name and information of the intermediate point. | Input Info <br> [ENT] | InterMediate <br> PN ? $=>\text { TPO1_ }$ |
| 4. Collimate the staff in the intermediate point and press [MEAS]. <br> After measurement, the rod average value will be displayed for M seconds. <br> 5 Press [ENT], the instrument is | Collimate intermediate press <br> [MEAS] | InterMediate <br> Info\# 1 $=>_{-}$ |


| ready for the next intermediate point measurement; after being recorded, the point name will increase automatically; If user want to collect more data of intermediate point, please repeat the step 4 and 5 . | [ $\mathbf{\Delta}]$ or [ $\mathbf{V}$ ] | InterMediate <br> PN :TPO1 <br> Press [MEAS] to meas |
| :---: | :---: | :---: |
| 6. Press [ESC] to exit and return to the Leveling measurement. |  | InterMediate 1/2 <br> Rod Ave:2.9378m <br> Dist Ave:32.455m <br> $\mathrm{N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ |
|  | [REC],[ENT] or [ESC] | InterMediate 2/2 <br> Int GH:10.0000m <br> PN:TPO1 |
|  |  | InterMediate <br> SaveData [REC] <br> Continue [ENT] <br> Exit [ESC] |

## StakeOut Key [IN/SO]

In stakeout mode, user can stakeout the point with presetting ground height. According to the record mode setting, the coordinate data of stakeout point can be saved in "Memory" or "SD card".


| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. After the backsight measurement press [ $\mathrm{IN} / \mathrm{SO}$ ] before taking the foresight measurement. | [ $\mathrm{IN} / \mathrm{SO}$ ] | Level BFFB <br> Fr1 <br> PN :PO1 <br> Press [MEAS] to meas |
| 2. Press $[\mathbf{\Delta}]$ or $[\mathbf{V}]$ to choose "Stake Out" | [ENT] | Level BFFB InterMediate <br> Stake Out |
| 3. Press [ENT], the coordinate of stakeout point can be recalled in the flash or SD card, which can be choose in the Condition Setting. | [ENT] | Stake Out Load Data? <br> Yes:[ENT] No:[ESC] |
| 4. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose one job and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[E N T]} \end{gathered}$ | Select JobPO2 <br> J01 <br> J02 <br> J03 |
| 5. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose one point and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{\nabla}]} \\ {[\text { ENT }]} \end{gathered}$ | Select PoiPO1 <br> - P01 <br> PO2 |
| 6. Confirm the chosen point and press [ENT]; | [ENT] | Select PoiPO1 <br> PN :PO1 <br> G.H:10.0011m <br> Yes: [ENT] No: [ESC] |


| 7. Input point name and press [ENT]; | Input PN <br> [ENT] | Stake Out <br> Set G.H: 10.0011 m <br> PN :GO1_ |
| :---: | :---: | :---: |
| 8. Input the information and press [ENT]; | Input Info [ENT] | Stake Out <br> Info\#1 $=>_{-}$ |
| 9. Sight at the staff in the stakeout point and press [MEAS]. After measuring, 3-times measuring value and the average value will be displayed. | [MEAS] | Stake Out <br> Set G.H: 10.0011 m <br> PN :G01 <br> Press [MEAS] to meas |
| 10. Press [ENT] to stakeout next point, the point name will increase automatically; press [ESC] to exit the Stakeout | [REC], [ENT] or [ESC] | Stake Out $1 / 2$ <br> S.O Rod: 0.0020 m <br> S.O H.D: $\downarrow 1.002 \mathrm{~m}$ <br> N:3 $\delta: 0.02 \mathrm{~mm}$ |
| Leveling measurement. |  | Stake Out  <br> SaveData: [REC] <br> Continue: $[E N T]$ <br> Exit: $[E S C]$ |

The presetting coordinate data is not in the "memory" or "SD card".
[Example 2] Manually input the ground height, point name and other information of the stakeout point, the measuring time is 3 .

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. After the backsight measurement press [IN/SO] before taking the foresight measurement. <br> Use [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to choose | $\begin{gathered} {[\mathrm{IN} / \mathrm{SO}]} \\ {[\mathbf{\Delta}] \text { or }[\mathbf{\nabla}]} \\ {[\mathrm{ENT}]} \end{gathered}$ | Level <br> InterMediate <br> Stake Out |


| "Stake Out", then press [ENT]. |  |  |
| :---: | :---: | :---: |
| 2. Press [ESC] to cancel recalling the data from memory. | [ESC] | Stake Out Load Data <br> Yes:[ENT] No:[ESC] |
| 3. Input the ground height and press [ENT]. | Input G.H <br> [ENT] | Stake Out <br> Input SO G.H $=10 \quad \mathrm{~m}$ |
| 4. Input the point name and press [ENT]. | Input PN [ENT] | Stake Out <br> Set G.H: 10.000 m <br> PN :G01 |
| 5. Input the note and press [ENT]; | Input note [ENT] | Stake Out <br> Info\#1 $=>$ |
| 6. Sight at the staff in the stakeout point and press [MEAS]. After measuring, | Sight at stakeout point | Stake Out <br> Set G.H: 10.000 m <br> PN :G01 <br> Press [MEAS] to meas |
| 3-times measuring value | [MEAS] |  |
| and the average value will be displayed. |  | Stake Out $\quad 1 / 2$ S.O Rod:0.0020m S.O H.D $\uparrow 1.002 \mathrm{~m}$ |
| 7. Press [ENT] to stakeout next point, the point name will increase automatically; | Press [REC] or | $\mathrm{N}: 3 \quad \mathrm{~J}: 0.02 \mathrm{~mm}$ |


| press [ESC] to exit the Sta- <br> keout mode and go back to <br> the Leveling measurement. | [ENT],[ESC] | Stake Out  <br> SaveData: [REC] <br> Continue: [ENT] <br> Exit: [ESC] |
| :--- | :--- | :--- |

### 4.2 End the Leveling Measurement on the Transition Point

User can end the leveling measurement job on the transition point The close job can be restarted. If user wants to continue the leveling measurement job from a transition control point, please refer to "Continue Leveling".

Please see the example next page.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. After measuring, when the screen display "Bkl", press [MENU] before next measurement. | [MENU] | Level BFFB <br> BkI <br> PN :PO1 <br> Press [MEAS] to meas |
| 2. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "End Leveling". | $[\mathbf{\Delta}] \text { or }[\mathbf{\nabla}]$ <br> [ENT] | Leveling <br> Start Leveling <br> Continue leveling <br> End Leveling |
| 3. Select "CP Close" and press [ENT]. | [ENT] | Level BFFB <br> CP Close <br> BM Close |
| 4. Input the transition control point (CP) name. | Input CP name $+$ [ENT] | Level BFFB <br> PN ? $=>$ |
| 5. Input information 1 and 2. <br> - Press [ENT] to skip inputting the information. Up to 16 characters can be inputted. | Input Info 1 <br> [ENT] | Level BFFB <br> Info\# 1 $=>$ |
| 6. Press [ENT]. | Input Info 2 <br> [ENT] | Level BFFB Info\#2 $=>$ |


| 7. Press [ $\mathbf{\Delta}]$ or $[\mathbf{V}]$ to view the data | [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] | Level BFFB 1/2 <br> $\Delta \mathrm{h} \quad \mathrm{CP}: \quad 0.000 \mathrm{~m}$ <br> $\Delta h$ इCP: 0.002 m <br> £D CP: 38.950m |
| :---: | :---: | :---: |
| 8. Press [ENT] to exit. | [ENT] | Level BFFB $\quad 2 / 2$ ED $\Sigma C P: 233.676 m$ G.H.CP : 10.0002 m |
|  |  | Menu <br> Standard Mode <br> Leveling <br> Adjust |

### 4.3 End the Leveling Measurement on the Bench Mark Point

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. After measuring, when the screen display "Bkl", press [MENU] before next measurement. | [MENU] | Level BFFB <br> BkI <br> PN :PO1 <br> Press [MEAS] to meas |
| 2. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "End Leveling". | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | Leveling <br> Start Leveling <br> Continue leveling <br> End Leveling |
| 3. Select "BM Close" and press [ENT]. | [ENT] | Level BFFB <br> CP Close <br> BM Close |


| 4. Input the bench mark (BM) point name and press [ENT]. | Input BM name [ENT] | Level BFFB <br> PN ? $=>$ |
| :---: | :---: | :---: |
| 5. Input information 1 and 2. <br> - Press [ENT] to skip inputting the information. Up to 16 characters can be inputted. | Input Info 1 <br> [ENT] | Level BFFB Info\#1 $=>$ |
| 6. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to view the data <br> 7. Press [ENT] to exit. | Input Info 2 [ENT] $[\mathbf{\Delta}] \text { or }[\mathbf{V}]$ | Level BFFB <br> Info\#2 $=>$ <br> Level <br> $\Delta h \quad$ CP: 0.000 m <br> $\Delta h$ 乏CP: 0.002 m <br> LD CP: 38.950m |
|  | [ENT] | Level BFFB 2/2 <br> LD इBM: 233.676 m <br> G.H.BM : 10.0002m <br> Menu <br> 1/2 <br> Standard Mode <br> Leveling <br> Adjust |

Note: If user end the Leveling measurement on the bench mark point, this leveling measurement job is over. User can not continue this job.

### 4.4 Continue Leveling

This function is used for continuing the leveling measurement.

- The "Out Module" in the setting mode should be "Flash" or "SD".
-The Leveling measurement job must be ended by the "CP Close".
- For saving data, the "Out Module" should be set as "Flash" or "SD".

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Select "Leveling" and press [ENT]. | [MENU] | Menu <br> Standard Mode <br> Leveling <br> Adjust |
| 2. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to select "Continue Leveling" and press [ENT]. | $[\mathbf{\Delta}] \text { or }[\mathbf{\nabla}]$ <br> [ENT] | Leveling <br> Start Leveling <br> Continue Leveling End Leveling |
| 3. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to select a job and press [ENT]. | [ENT] | Select Job <br> JOI <br> J02 <br> J03 |
| 4. Collimate the backsight point (BK) and press [MEAS] to remeasure. After measuring, the result will be displayed for M seconds. | Collimate BK [MEAS] | Level BFFB <br> Bk1 <br> PN :P05 <br> Press [MEAS] to meas |

## 5. OTHER FUNCTIONS

### 5.1 Manually Inputting Data Key-[MANU]

According to some causes, it can not use [MEAS] key to take measurement. User can use [MANU] to manually input the rod reading and distance from instrument to the staff.
[Example]: In the process of Leveling measurement

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. When measuring the backsight, foresight or intermediate points, user can use [MANU] key instead of [MEAS]. | [MANU] | Level BFFB <br> Bkl <br> PN :PO3 <br> Press [MEAS] to meas |
| 2. Input the rod value and press [ENT]. <br> Note: The range of inputted rod value is $-4.9999 \sim+4.9999 m$ | Input rod value $+$ [ENT] | Level BFFB <br> Rod? $=1.0410 \mathrm{~m}$ |
| 3. Input the distance and press [ENT]. <br> Note: The range of distance value is $0 \sim 99.9999 \mathrm{~m} .$ | Input distance <br> $+$ <br> [ENT] | Level BFFB <br> Dist? $=10.000 \mathrm{~m}$ |
|  |  | Level BFFB $1 / 2$ <br> B1 Rod 1.0410 m  <br> B1 Dist 10.000 m  <br> N:Manu   |
|  |  | $\begin{aligned} & \text { Level BFFB } \quad 2 / 2 \\ & \text { PN :PO3 } \end{aligned}$ |


| 4. According to the previous <br> point is foresight or backsight <br> point, system will go to next <br> step. |  |  |
| :--- | :--- | :--- |
|  |  | Level BFFB <br> $\mathrm{Fr} \quad$ <br> PN :PO4 <br> Press [MEAS] to meas |

## [Example]: In the process of Standard Measurement

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. While displaying the point name, use [MANU] instead of | [MANU] | Measure <br> Press [MEAS] to meas <br> Meas\#:1 |
| 2. Input the rod value and press [ENT]. | Input rod value <br> $+$ <br> [ENT] | Measure <br> Rod? $=1.0410 \mathrm{~m}$ |
| 3. Input the distance and press [ENT]. | Input distance $+$ [ENT] | Measure <br> Dist? $=10.000 \mathrm{~m}$ |
| 4. Press [ENT] to save data. Press [ESC] to cancel saving. | [ENT] or [ESC] | Measure Record Data? Yse: [ENT] No: [ESC] |
|  | [ENT] | Measure <br> Rod: 1.0410 m <br> Dist: 10.000 m <br> N: MANU |


|  | [MEAS] | Measure <br> Press [MEAS] to meas <br> Meas\#:1 |
| :--- | :--- | :--- |

### 5.2 Display the Distance-[DIST]

Before measuring, user can use [DIST] to check the distance in order to make sure the distance of foresight and backsight points are the same.

### 5.3 Inverse Staff Mode-[-]

Inverse staff mode is used for measuring the inverse staff which aims at measuring the celling.

First of all, user should set the "Inverse Mode" in setting mode as "Use". Please refer to chapter 8 "Set Mode" for more details.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [-] to set the INVERSE MODE as ON, then the screen will display the symbol ${ }^{\prime}$ '. | [-] | Measure <br> Press [MEAS] to meas PN :1 |
| 2. Collimate the inverse staff and press [MEAS]. | Collimate staff $+$ <br> [MEAS] | Measure <br> I <br> Press [MEAS] to meas <br> PN :1 |
|  |  | Measure $\quad 1 / 2 \quad$ I Rod Ave:-1.9766m Dist Ave:19.008m $\mathrm{N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ |
| 3. Press [-] again to return to the normal measuring mode. | [-] | Measure $\quad 1 / 2$ Rod Ave:-1.9766m Dist Ave: 19.008 m $\mathrm{~N}: 3 \quad \delta: 0.02 \mathrm{~mm}$ |

### 5.4 Record Data Search—[SRCH]

[SRCH] key can be used for searching and displaying the data stored in internal memory or SD card which can be set in the "Out Module".
["Out Module" is set as "Flash"]
[Example]: Searching the bench mark (BM) point

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press $[S R C H]$ at the main menu. | [SRCH] | Menu <br> Standard Mode Leveling Adjust |
| 2. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose the search type and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{\nabla}]} \\ {[\text { ENT] }} \end{gathered}$ | Search <br> Job <br> PN <br> BM\# |
| 3. Input the search contents. | Input BM point name $+$ [ENT] | Input BM \# <br> BM\#? $=>B O 1$ |
|  | [SRCH] | Input BM\# <br> BM\#? $=>B 01$ <br> Press [SRCH] to search |
|  | [SRCH] | Level BFFB <br> BM\#:BO1 <br> G.H:19.008m <br> E.V Limit: 2.00 mm |
|  | [SRCH] | Level BBFF <br> BM\#:BO1 <br> G.H:10.001m <br> E.V Limit: 2.50 mm |

- After search the bench mark point, press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to display the last or next data.
- If the searching goes to the end, the screen will display "No data, EOF".
- Press [ESC] once or twice to return.
["Out Module" is set as "SD"]
Only the files in the same group can be searched.
[Example]: Searching the bench mark (BM) point

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press $[\mathrm{SRCH}]$ at the main menu. | [SRCH] | Menu $1 / 2$ <br> Standard Mode <br> Leveling <br> Adjust |
| 2. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose the group and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT] }} \end{gathered}$ | Group <br> AAA <br> BBB |
| 3. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose the search type and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | Search <br> Job <br> PN <br> BM\# |
| 4. Input the search contents. | Input BM point name | Input BM \# BM\#? $=>B O 1$ |
|  | [SRCH] | Input BM\# <br> BM\#? $=>B 01$ <br> Press [SRCH] to search |



## 6 HORIZOTAL ANGLE MEASUREMENTS

This instrument is equipped with a horizontal dial which can be used for horizontal angle measurement. Every $1^{\circ}$ with a graduation, every $10^{\circ}$ with a mark in the dial, and the graduation increases from $0^{\circ}$ to $350^{\circ}$ in clockwise direction.

(1)First, set up and level the instrument in start point C. Second, sight the telescope to backsight point $A$, and rotate the horizontal tangent screw until crosshair is accurately on the staff at point $A$. Rotate the horizontal dial at $0^{\circ}$.
(2)Sight the telescope to point B, and adjust the horizontal tangent, until the crosshair is accurately on the staff at point $B$. And the angle reading is angle between target $A$ and target $B$, i.e. $\angle A C B$.


Optical Distance Measure
With the stadia hair of the instrument and the graduation on the staff, you can
measure the distance easily. The stadia interval on the staff multiplies 100 is the distance. The stadia interval is the interval between the upper hair and the lower hair on the reticle.
(1) Set up the staff on the target point.
(2) Set up and level the instrument. Sight the telescope to the staff. Record the stadia interval between upper hair and lower wire as "1".
(3) The distance "L" between instrument and staff is $\mathrm{L}=100 \times 1$.


## 7. FORMAR FLASH OR SD CARD

This function is used for deleting the all files in the memory or SD card, which can not be recycled after formatting. In order to avoid the mistake in deleting the data, the system requires to input the password while formatting. The password is set by the factory and user can not modify it. Please note that this is the only page where record the code.

Password: 519

SD Card Formating

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [MENU] and use [ $\mathbf{\Delta}$ ]or [ $\mathbf{V}$ ] to choose "Format" and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{\nabla}]} \\ {[\mathrm{ENT}]} \end{gathered}$ | Menu 2/2 <br> Data Manage <br> Format |
| 2. Input the password:519, then press [ENT]. | Password: 519 $+$ <br> [ENT] | Format <br> Input password $=>$ |
| 3. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}]$ to choose "SD" and press [ENT]. | [ $\mathbf{A}$ ] or [ $\mathbf{V}$ ] | Format <br> Format Flash <br> Format SD |
| 4. Confirm the information and press [ENT]. | [ENT] | Format <br> SD <br> Format OK? <br> Yes:[ENT] No:[ESC] |


|  |  | FormatSDFormat... $\|$Format <br> SD <br> Formated <br> Format <br> SD <br> Power off <br> Auto Power Off. |
| :---: | :---: | :---: |

Memory Formating

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [MENU] and use [ $\mathbf{\Delta}$ ]or [ $\mathbf{V}$ ] to choose "Format" and press [ENT]. | $[\mathbf{\Delta}] \text { or }[\mathbf{\nabla}]$ <br> [ENT] | Menu 2/2 <br> Data Manage <br> Format |
| 2. Input the password:519, then press [ENT]. | Password: 519 <br> [ENT] | Format <br> Input password $=>$ |
| 3. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Flash" and press [ENT]. | [ $\mathbf{C}$ ] or [ $\mathbf{V}$ ] | Format <br> Format Flash <br> Format SD |


| 4. Confirm the information and | [ENT] | Format <br> Flash <br> Format OK? [ENT]. <br> Yes:[ENT] $\quad$ No:[ESC] <br> Format <br> Flash <br> Format.... <br> Format <br> Flash <br> Formated |
| :--- | :--- | :--- |
| Format <br> Flash <br> Power off <br> Auto Power Off. |  |  |

## 8. DATA MANAGE

This chapter will introduce how to use "Data Manage" of main menu to manage the memory (RAM) and SD card. The following functions are included:

- Make goup in the SD card
- Search ( this function is the same as "SRCH")
- Copy Job (Two ways: one is from memory to SD card, the other is from SD card to memory)
- Delete job in the memory or SD card
- Check the capacity of memory or SD card
- Export file to the computor

Files in the Memory and SD Card
Job and coordinate data can be saved in the memory or SD card in the following way.

Flash
JOBO1.M
JOB02.L
JOB021.A
JOB022.L

SD card G01
JOBO1.M
JOB02.L
JOB021.M
JOB022.L

G02
JOBO1.M
JOB02.L
JOB021.M
JOBO22.L

- No file in the internal memory.
- The file can not be created in the SD card when, in a group, it exits a file with same name.
-According to the file type, the file will add the extension name in the following order:
.L: Leveling measurement data file
.M: Standard measurement data file
.A: Adjustment data file
.H: Ground height file
.T: Inputted point file
According to the file type, user can transfer the inputted points file, standard measurement file, leveling measurement file and ground height file to the computer with USB connector. The default communication port setting is as following:

Band Rate: 9600, Data Bits: 8 Stop Bits: 1, Parity: None.

### 8.1 Create Group

User can create one or more group which is convenient for view and check.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Data Manage". | [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] | Menu $2 / 2$ <br> Data Manage <br> Format |
| 2. Press [ENT] to enter, then press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Make Group" and press [ENT]. | $\begin{gathered} {[\text { ENT }]} \\ {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \end{gathered}$ | Data Manage $\quad 1 / 3$ <br> Make Group <br> Input P $\dagger$ <br> Search |
| 3. Input the group name and press [ENT]. <br> After the screen display "OK!", it will return to the "Data Manage" screen. | Input Group Name [ENT] | Data Manage Group Name? = >GO1 |
|  |  | Data Manage <br> Making Group...... <br> GO1 |
|  |  | Data Manage OK! |
|  |  | Data Manage 1/3 <br> - Make Group <br> Input Pt <br> Search |

### 8.2 Search Job

Beside coordinate data, user can easily search the job in the file of SD card or internal memory according to the "Out Module" setting.


### 8.3 Copy Job

The job in the SD card can be copied to the internal memory, vice versa.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [MENU] and [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Data Manage". | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[E N T]} \end{gathered}$ | Menu <br> Data Manage <br> Format |
| 2. Press [MENU] and [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Copy Job", then press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[E N T]} \end{gathered}$ | Data Manage 2/3 <br> Copu Job <br> Delete Job <br> Check Capacity |
| 3. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "SD" and press [ENT]. | [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] <br> [ENT] | Copy from Flash SD |
| 4. Press [ $\mathbf{\Delta}]$ or [ $\mathbf{V}]$ to select a group and press [ENT]. | [ENT] | Select GroPO1 <br> G01 <br> G02 <br> G03 |
| 5. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to select the job type and press [ENT]. | [ENT] | Job Type 1/2 <br> Standard Mode <br> Leveling <br> Adjust |
| 6. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to select a job and press [ENT]. |  | Select JobPO1 <br> JOI <br> J02 <br> J03 |


| 7. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to choose "SD" and press [ENT]. <br> 8. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to select a group and press [ENT]. | [ENT] | Copy to <br> Flash <br> SD |
| :---: | :---: | :---: |
|  | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\mathrm{ENT}]} \end{gathered}$ | $\begin{aligned} & \text { Select GroP01 } \\ & \text { G01 } \\ & \text { G02 } \\ & \text { G03 } \end{aligned}$ |
|  | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT] }} \end{gathered}$ | Data Manage Complete |
|  |  | Data Manage <br> Copu Job <br> Delete Job <br> Check Capacity |

### 8.4 Delete Job

According to the "Out Module" setting, user can delete the job data which is saved in SD card or internale memory.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [MENU] and [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Data Manage". | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT] }} \end{gathered}$ | Menu $\quad 2 / 2$ - Data Manage Format |
| 2. Press [MENU] and [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Delete Job", then press [ENT]. | [ $\mathbf{\Delta}]$ or [ $\mathbf{V}]$ <br> [ENT] | Data Manage 2/3 <br> Copu Job <br> Delete Job Check Capacity |
| 3. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}]$ to select a group and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT] }} \end{gathered}$ | Select GroPO1 GO1 G02 G03 |
| 4. Press [ $\mathbf{\Delta}]$ or [ $\mathbf{\nabla}]$ to select the job type and press [ENT]. | [ENT] | Job type $\square$ <br> Standard Mode <br> Leveling <br> Adjust |
| 5. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to select a job and press [ENT]. | [ENT] | Select JobPO <br> J01 <br> JO2 <br> J03 |
| 6. Press [ENT] to confirm. | [ENT] | Data Manage Delect? |



### 8.5 Check the Capacity of Flash or SD Crad

User can check the capacity of flash or SD card by the following method.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [MENU] and [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Data Manage". | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{v}]} \\ {[\text { ENT] }} \end{gathered}$ | Menu <br> Data Manage <br> Format |
| 2. Press [MENU] and [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Capacity", then press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[E N T]} \end{gathered}$ | Data Manage $2 / 3$ Copu Job Delete Job Check Capacity |
| 3. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to choose "Flash" and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT] }]} \end{gathered}$ | Check Capacity <br> Flash <br> SD |

\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { 4. Press any key to go back to } \\
\text { the previous screen. }\end{array} & \text { [ENT] } & \begin{array}{l}\text { Check Capacity } \\
\text { Flash:96\% }\end{array}
$$ <br>

Press Any Key exit\end{array}\right]\)| Check Capacity <br> Flash <br> SD |
| :--- | :--- |

### 8.6 File Out

The jobs in files or internal memory can be transferred to external instrument.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Press [MENU] and [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to choose "Data Manage". | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | Menu <br> Data Manage <br> Format |
| 2. Press [MENU] and [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to choose "File Out", then press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT] }} \end{gathered}$ | Data Manage 3/3 <br> File Out |
| 3. Press [ $\mathbf{\Delta}$ ] or $[\mathbf{\nabla}]$ to choose Flash and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | Select Memory <br> SD <br> Flash |
|  |  | Job Type |


| 4. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to select job type and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT] }]} \end{gathered}$ | Standard Mode Leveling Adjust |
| :---: | :---: | :---: |
| 5. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to select the job and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT] }} \end{gathered}$ | Select JobPO1 <br> JO1 <br> J02 <br> J03 |
| 6. Press [ENT] to confirm. | [ENT] | ```Data Manage Send Data? J01 Yes:[ENT] No:[ESC]``` |
| 7. After sending, the screen will go back to "Data Manage". |  | Data Manage Sent |

## 9. SET

The "Set" mode is used for setting the parameters of leveling measurement, for example, user can set the unit, communication parameter etc. The setting will remain after switching off.
9.1 Set Menu

| Menu $\quad$ Standard Mode <br> Leveling <br> Adjust <br> Setting <br> Measurement <br> Condition <br> Instrument |
| :--- |



## 1. Measurement Mode:

In "Measurement Mode" user can select one of the following measure modes. Single, N Times and Continuous. It is recommended to increase the number of measurements
to carry out a high-accuracied result.

| Option | Function |
| :--- | :--- |
| N Times | Set the N times measurement mode. |
| The range of N is 1 to 99 |  |
| Single | Single measurement mode |
| Continuous | Continuous measurement mode |

2. Minimum Reading:
"Minimum Reading" is used for setting the minimum reading unit

| Option | Function |
| :--- | :--- |
| Standard | 1 mm |
| Precise | 0.1 mm |

3. Inverse Mode:
"Inverse Mode" is used for setting the inverse staff measurement. Please refer to the "Inverse Staff Mode"

| Option | Function |
| :--- | :--- |
| No Use | No use the "inverse Mode" |
| Use | Use the "Inverse mode" |

4. Unit:
"Unit" is used for setting the unit.

| Option | Function |
| :--- | :--- |
| m | Measurement unit: m (meter) |
| ft | Measurement unit: US.ft(US.Feet) <br> $1 \mathrm{~m}=3.280833333333333 \mathrm{ft}$ |

## 5. Out Module:

"Out Module" is used for setting whether to save the data and the place where it will be save.

Please refer to the: Setting the Data Out Module"

| Option | Function |
| :--- | :--- |
| Flash | To save data in internal memory |
| SD | To save data in SD card |
| USB | To connect the instrument with computer |
| OFF | Do not save the data |

6. Point No.
"Point No." is used to selecting the point name increasing or decreasing.
7. Wait Time:
"Wait Time " is used for setting the display time which is from a certain screen to the next screen.

| Option | Function |
| :--- | :--- |
| M Second | $1 \sim 9$ seconds optional |

## 8. Communication

"Communication" is used for setting the parameters of communication.

| $1^{\text {st }}$ Menu | $2^{\text {nd }}$ Menu | Function |
| :--- | :--- | :--- |
| Standard | ------- | Standard setting: <br> Baudrate:9600, Date Bits:8, <br> Stop Bits: 1, Parity: None |
| User | Baudrate | Baudrate:300/600/1200/2400/4800/9600 |
|  | Parity | Parity unit: Even, Odd and None optional |

## 9. Auto OFF:

"Auto OFF" is used for setting whether to use the "Auto Off" function.
If this function is on, the instrument, without any operation, will be off in 5 minutes.

| Option | Function |
| :--- | :--- |
| ON | To set the "Auto OFF" as ON |
| OFF | To set the "Auto OFF" as OFF |

10. Contrast:
"Contrast" is used for setting the contrast of the screen which has 9 degrees.

| Option | Function |
| :--- | :--- |
| Contrast | To set one of the 9 degrees contrast. |

## 11. Backlight:

"Backlight" is used for setting whether to open the backlight.
12. Instrument Infor:

In this function, user can check the instrument information such as: Model, serial number and produce date.

### 9.2 Alter the Setting Mode

Example 1: To set the measurement time as 3.

| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1.Before measuring or at the menu, press [SET] to display the "Setting" interface. | [SET] | Menu <br> Standard Mode <br> Leveling <br> Adjust |
| 2. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] to select "Measurement" and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | Setting <br> Measurement <br> Condition <br> Instrument |
| 3. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to select "Measure Mode" and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | Measurement $1 / 2$ <br> Measure Mode <br> Minimum Reading Inverse Mode |



- Using the everage value of N -times measurement can improve the measuring accuracy.


## 10. BATIERY AND CHARGER

The on-board battery is NB-21.
Charging
(1) The output voltage of the charger is $\mathrm{AC} 110 \mathrm{~V} \sim 220 \mathrm{~V}$. The electric current is 450 mA .
(2) Red light means the battery is being charged. Green light means charging is finished.
(3) It will take 5 hours to charge the battery.
(4) Unplug the power plug after charging.

Note: a. Battery-charging should be in the temperature of $10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$
b. When the charging time exceeds the suggested charging time, the battery life might be shortened.
c. The battery may discharge in storage. Inspect the battery before use if the instrument is stored for a long time.
d. The battery should be stored in a temperature below $30^{\circ} \mathrm{C}$, and should be recharged every three or four months.

## 11. ADJUSTMENT

## Circular Vial Adjustment

1. Mount the instrument on a tripod. Center the circular vial precisely by rotating the 3 tribrach screws.
2. Rotate the instrument $180^{\circ}$. If the bubble is not in the center, the circular vial should be calibrated as follow:
a. Firstly, identify the bubble moving direction, and adjust the corresponding screws to move the bubble half of the offset.
b. Level the circular vial with the 3 tribrach screws again.
c. rotate the instrument around again to check whether the bubble is centered in every direction. If not, please repeat the steps a \& b until the bubble is centered.

## Difference of Line of Sight

### 11.1 Method A

1. Two staffs are about 50 m away, set up the tripod in the center and attach the instrument on it.
2. Leveling the instrument;
3. The inspectations are as follow:


| Operating Procedures | Operation | Display |
| :---: | :---: | :---: |
| 1. Select "Adjust" according to the screen display and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | Menu <br> Standard Mode Leveling <br> Adjust |
| 2. Press [ $\mathbf{\Delta}$ ] or [ $\mathbf{V}$ ] to choose "Method A" and press [ENT]. | $\begin{gathered} {[\mathbf{\Delta}] \text { or }[\mathbf{V}]} \\ {[\text { ENT }]} \end{gathered}$ | Adjust <br> Method A <br> Method B |
| 3. Input the job name and press [ENT]. | Job name [ENT] | Adjust <br> Job Name? =>JOו |
| 4. Input the information 1 and press [ENT]. | Info 1 <br> [ENT] | Adjust <br> Info \#1 $=>1$ |
| 5. Input the information 2 and press [ENT]. | $\begin{aligned} & \text { Info } 2 \\ & \text { [ENT] } \end{aligned}$ | Adjust <br> Info \#2 $=>2$ |
| 6. Input the information 3 and press [ENT]. | Info 3 <br> [ENT] | Adjust <br> Info \#3 $=>3$ |


| 7. Collimate the staff in point a and press [MEAS] (As shown in the figure 1), meanwhile, take measurement and the screen | [MEAS] | Adjust $\quad$ A Point:A Rod:a a๘----A $\quad$ b Press [MEAS] to meas |
| :---: | :---: | :---: |
| 8. Collimate the staff in point $b$ and press [MEAS] (As shown in the figure 1), meanwhile, take measurement and the screen |  | Adjust A <br> Point:A Rod:a <br> Aa Rod: 1.0567 m  <br> N:3 $\delta: 0.02 \mathrm{~mm}$ |
| 9. Move the instrument to point | [MEAS] | Adjust A <br> Point:A Rod:b <br> a $\quad$ A---- $\rightarrow$ b  <br> Press [MEAS] to meas  |
| figure 2). <br> At this time, user can switch off the instrument to save power. |  | Adjust $\quad$ A <br> Point:A Rod:b <br> Ab Rod: 1.0567 m  <br> N:3 $\delta: 0.02 \mathrm{~mm}$ |
| 10. Collimate the staff in point a and press [MEAS] (As shown in the figure 2), meanwhile, take measurement and the screen will display Ba. |  | Adjust <br> Method A <br> Move A------- $B$ <br> Relocate |
| 11. Collimate the staff in point b and press [MEAS] (As shown in the figure 2), meanwhile, take measurement and the screen will display Bb. |  | Adjust A <br> Point:B Rod:a <br> $a \leftarrow---B \quad b$ <br> Press [MEAS] to meas |


| 12. Display the adjusting value. <br> If user wants to continue adjustment, press [ENT]. | [MEAS] | Adjust A <br> Point:B Rod:a <br> Ba Rod: 1.0567 m  <br> $\mathrm{~N}: 3$ $\delta: 0.02 \mathrm{~mm}$ |
| :---: | :---: | :---: |
| 13. Press [ENT] to display the rod reading of point b. |  | Adjust A <br> Point:B Rod: $b$ <br> a B---- -b <br> Press [MEAS] to meas  |
| 14. Rotate the rod reading of point $b$ and remove the eyepiece cover 1, use adjusting pin to rotate the crosshair adjusting screw 2 under the eyepiece. | [MEAS] | Adjust $\quad$ A  <br> Point:B Rod:b <br> Bb Rod: 1.0567 m  <br> N:3 $\delta: 0.02 \mathrm{~mm}$ |
| Note: This adjustment must be carried out by the professional person. |  | Adjust A <br> Adjusting value $+0.0000 \mathrm{~m}(+0.1 ")$ <br> Save[ENT] No [ESC] |
| read the value manually. Move the crosshair up and down until the horizontal line is consistent with the correct reading. | [ENT] | Adjust <br> Method A <br> Adjust Crosshair? <br> Yes:[ENT] No:[ESC] |
| 16. Press [ENT] to return to the "Adjust" interface. | [ENT] | Adjust <br> Method A <br> Adjust Crosshair? <br> Bb Rod: 1.0567 m |


|  |  | Menu $\quad 1 / 2$ <br> Standard Mode <br> Leveling <br> Adjust |
| :--- | :--- | :--- |

-To cancel the inspectation, user just needs to press [ESC] among step 1 to 11.
-When the instrument displays the error information; press [ESC] to continue the inspectation.

### 11.2 Method B

1. As shown in figure 1, attach the instrument on the tripod and set the tripod on the point $A$ and $B$ which trisect the distance between the two staffs.
2. Leveling the instrument.

3. The inspectation process is the same with Method $A$

## 12. TRANSPORTATION, STORING AND CLEANING

## Transportation

(1) In outdoor operation, the instrument should be stored in the carrying case, or fixed on the tripod and carried on the shoulder. Make sure not to carry the instrument upside down.
(2) In road transportation, do not leave too much space between instrument cases. Normally, the instrument should be stored in a special case in road transportation. (3) In plane, train or ship transportation, the instrument should be stored in original carrying case and carton.
(4) Delivering the battery: related law and rules should be totally understood. Inform the carrier before the shipment.

## Storage

(1) Notice the temperature when storing the instrument, especially the temperature inside the car in hot summer.
(2) The battery should be removed if the instrument will be stored for a long time.
(3) Do not store the wet instrument into the case before it is wiped dry.

## Clean

(1) Clean the instrument after use.
a. If the instrument is wet by seawater, it should be wiped with a wet cloth and then be dried by a dry cloth.
b. Wipe the dust on the instrument with a clean brush and a soft cloth. Do not blow it with compressed air.
c. Wipe the dust on the objective lens with a clean brush, and wipe it with cotton with mixture of alcohol and ether.
(2) When cleaning the plastic parts of the instrument, do not use volatile liquid such as thinner and benzene. Neutral cleansing is suggested.
(3) Check each parts of the tripod after long-term use; make sure the screw and brake parts are tighten.
(4) Clean the staff after use; otherwise it will influence on the accuracy. Do not use volatile liquid such as thinner and benzene to clean the staff.
(5) Store the staff in safe place. And cover the joints of the staff with cloth.

## 13. SPECIFICATION

| Model Specification |  | DL-201 | DL-2007 |
| :---: | :---: | :---: | :---: |
| height accuracy (standard deviation for 1 km double run leveling) | digital reading | 1.0 mm | 0.7 mm |
|  | optic reading | 2.0 mm |  |
| distance accuracy | digital reading | D $\leq 10 \mathrm{~m}: 10 \mathrm{~mm} ; \mathrm{D}>10 \mathrm{~m}: \mathrm{D}^{*} 0.001$ |  |
| distance range | digital reading | $1.5 \mathrm{~m} \sim 105 \mathrm{~m}$ |  |
| minimum display | HD | $1 \mathrm{~mm} / 0.1 \mathrm{~mm}$ |  |
|  | distance | $0.1 / 1 \mathrm{~cm}$ |  |
| measuring time |  | within 3 s in normal condition |  |
| telescope | magnification | $32 \times$ |  |
|  | resolving power | $3 "$ |  |
|  | field of view | $1^{\circ} 20^{\prime}$ |  |
|  | multi-constant | 100 |  |
|  | add-constant | 0 |  |
| compensator | type | magnetic-damped |  |
|  | range | $> \pm 12^{\prime}$ |  |
|  | accuracy | $0.301 / 1^{\prime}$ |  |
| data storage | storage | 16MB |  |
|  | point name | increasing/decreasing/user-defined |  |
|  | connection | USB |  |
|  | External Storage | SD Card |  |
| circular vial accuracy |  | 8'/2mm |  |
| auto power off |  | 5minutes/OFF |  |
| horizontal dial | graduation | $1{ }^{\circ}$ |  |
| display |  | LCD display of 160*64dpi with illuminator |  |
| Working temperature |  | $-20^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ |  |
| dimension |  | $230 \mathrm{~mm}(\mathrm{~L}) \times 150 \mathrm{~mm}(\mathrm{~W}) \times 210 \mathrm{~mm}(\mathrm{H})$ |  |
| weight |  | 2.5 kg |  |

