PART I 1
Foreword 错误！未定义书签。
1 Introduction of WinEG2007 2
1．1 Interface 2
1．2 Pull－Down Menu 2
2 Meas \rightarrow X－sect 9
2．1 New Project 9
2．2 Input Control Point 9
2．3 Occ \＆BS Set 10
2．4 Meas \rightarrow X－sect 11
3 Meas \rightarrow REM 15
4 Meas \rightarrow Coord 16
5 Edit \rightarrow Coord Data 18
6 Edit \rightarrow Alignment Data - 19
6．1 Edit \rightarrow Alignment Data 19
6．2 Add Road 20
6．3 Edit the Start Point of the Road 21
6．4 Edit Horizontal Alignment 22
6．5 Edit Vertical Alignment Data 26
6．6 Edit Transect 28
6．7 Calculate the Road Point 33
7 S.O. \rightarrow Radiate 34
7.1 File \rightarrow Import 34
7.2 Meas \rightarrow Occ \& BS 34
7.3 S.O. \rightarrow Radiate 34
8 S.O. \rightarrow Point 37
8.1 File \rightarrow Coord Import 37
8.2 Meas \rightarrow Occ\& BS Set 37
8.3 S.O. \rightarrow Point 37
9 S.O. \rightarrow Line \rightarrow line segment 39
10 S.O. \rightarrow Line \rightarrow Arc 42
11 S.O. \rightarrow Plane \rightarrow Slope 45
12 S.O. \rightarrow Plane \rightarrow 3 Pts plane 48
13 S.O. \rightarrow Plane \rightarrow Arc plane 50
14 S.O. \rightarrow Road 53
15 Function Introduction 57
15.1 File Menu 57
15.2 Meas Menu 60
15.3 Edit menu 70
15.4 S.O. menu 76
15.5 Tool menu 81
15.6 Setting menu 97
16 Appendix A: File forms for Engineering Genius 103
17 Appendix B: Upgrade and install WinEG2007 106
PART II 109
1 Introduction 109
2 Function Introduce 110
2.1 File 110
2.2 Data• 111
2.3 Design 112
2.4 Analysis 113
2.5 Tool 117
2.6 Report 117
2.7 View 121
2.8 Help. 122
2.9 Toolbar 122
2.10 Control Panel 123
2.11 Information Output Area 124
3 Route auxiliary computation 124
3.1 Single cross point for curve 124
3.2 Convexity curve 127
3.3 Tangency base line for curve 129
3.4 Complex curve 131
3.5 S curve 132
3.6 Oviform for curve 134
3.7 Widen and superelevation 135
4 Route calculation 137
4.1 Lay single cross point plane curve 137
4.2 Cut baseline plane curve 140
4.3 Complex curve 141
4.4 S-type plane curve 143
4.5 Egg-type plane curve 145
4.6 Vertical curve 146
5 Route theory design 148
5.1 Start point 149
5.2 Horizon alignment 149
T5.3 Vertical alignment 151
T5.4 Transect 153
5.5 Calculate road point 157
6 Intersection calculation 158
6.1 Forward intersection 158
6.2 Resection 160
6.3 Linear intersection 161
6.4 Angle intersection 162
6.5 Vertical distance point 163
6.6 Radiate 164
6.7 Foot of perpendicular 165
6.8 Lines intersection 166
6.9 Symmetry point 167
6.10 Point on line 168
6.11 Distance line 169
6.12 Coordinate transformation 170
7 System file 172
Appendix :File forms of EK. 178

PART I

Foreword

WinEG2007

WinEG2007 is designed for field work, it can run on WinCE operating system and also suitable for your PC. WinEG2007 is Easy to operate, Powerful, User-friendly, and Practical.

Copyright

This manual will introduce you how to use WinEG2007. We suggest you read it carefully.
All copyrights of the manual are reserved by our company. In the scope of copyright protection, reproduction, adaptation will be prohibited without the written consent of company.

Registered trademarks

AutoCAD, WinCE is registered trademarks. All those trademarks are the property of their respective owners.

Technical Service

From the day you buy WinEG2007, you have the right to ask for our after service.
Mail-box: softspt@vip.sina.com.

Hardware

High efficiency ARM or MIPS CPU
16MB memory
320×240 Touch screen
Serial and USB port
Pen

Software

WinEG2007 is only suitable for the win total station with Microsoft Windows CE.net

Components:

	name	Unit
1	WinEG2007 manual	1
2	Total Station Communication Cable	1

Caution:

When you use the command of Save, Save As, Coord Export, and File Export in WinEG2007, do save all the new files in the default file location SouthDisk

1. Introduction of WinEG2007

Power: Press the power key on the up right of the keyboard. See the following figure.

Run WinEG2007: Double click the icon of WinEG2007 on the desk.

1.1 Interface

See the following figure "interface":

Interface
In the interface of WinEG2007, from left to right we have pull-down menus: FILE, Meas, Edit, S.O., Tool, Setup, and icon: Attribute, Backspace, Redo, and Window for Surveying.
View tool bar: Zoom in, Zoom out, Annotation Text Delete, Move, Windowing, Full
Screen, Previous, Refresh, Annotation Text,
Window for angle and distance: $\mathrm{HA}, \mathrm{VA}, \mathrm{SD}$.
On the right of the screen is window for surveying.

1.2 Pull-Down Menu

File

Click File, See the following figure:

File
The options of file list are as follows:
New: Create a new graphic file; it will be automatically saved in the folder of " \sim \$Wineg $\$. \% \% \%$ "before you save it.
Open: Open an existing graphic file (*.prj).
Save: Save the information of the graphic file (*.prj).
Save As: Save the current graphic file as another completely different file.
Import: Input the coordinated point into the current graphic file. There are two different ways of import: Manual Entry and Auto Import.
Export: Create Cass file (*.dat).
Exit: Quit the WinMG2007.

Meas

Click the Meas in the menu, we get the following figure:

The options of file list are as follows:
Occ \& BS Set We need a backsight to start the process of surveying, there are two

ways BS Orientation and Azimuth Orientation.

X-Sect: We measure the points on the cross section, and work out the distance and height difference.
REM: REM can help you obtain the target height. Especially when the target is much higher than the place that you can put the prism on.
Recalculate: According to the raw data, we recalculate the current graphic file.
Occ in the center: Move the Occ point to the center of the screen, and show the whole figure in current scale.
Current Pt in the center: Move the latest point to the center of the screen, and show the whole figure in current scale.

Edit

Click Edit, see the following figure:

The items of this menu are as follows:
Coord Data: By clicking this item, you can browse, delete, and edit the coordinate data, see the following figure.

Edit

Caution: You can adjust the width of the list to see the whole information. Raw Data: You can browse the raw data here.

Fill-Cut Data: By clicking this command, you can browse the Occ Pt and BS Pt, but the data is unchangeable.

Fill-Cut Data
Alignment Data: Work out the coordinates and height according to the Horizontal alignment data and Vertical alignment data; show you the figure of vertical section,

S.O.

Click S.O., you will get the following figure:

S.O.

The items of this menu are as follows
Radiate: setout points with the distance and angle that exist between station and setout point.
Point: Layout points.
Line: Layout line, curve and arc.
Plane: Layout slope-plane, three points-plane, arc-plane.
Road Layout: Layout roads.

Tool

Click, Tool, you will get the following figure:

Tool

The items of this menu are as follows:
COGO: Under this menu, there are many ways to calculate unknown parameters, such as Intersection, Resection, etc. see the following figure.

COGO
Area: Calculate the area of any figure which is composed by points (at least three, non-collinear), or polygonal line.
Inverse: work out the coordinates with a known point, a distance and azimuth angle Reverse: work out the distance and angle with three known points.

Setup

Click setup, then you get the following figure:

The items of this menu are as follows:
System Setup; Here you can set the Screen Capture, Coord Info, 4 Points Ground Feature, Sheet Line System, Power, Quick Draw Mode, Distance Unit, North Arrow.
Project: You can check the creating data and version of project files with this function. Unit Set; Set up the unit of angle distance pressure and temp.

Measurement Set; Set the Tilt, Atmospheric correction parameters, Vertical angel mode.
Support: http://www.southinstrument.com
System Information: Copyright and version.

Tool Bar

Tool bar shows you the common functions of surveying and mapping. Here is the brief introduction of them;

Control the window for surveying by hiding or showing the window.

The windows for surveying on the left of the screen are as follows.

2. Meas \rightarrow X-sect

2.1 New Project

Click File New to create a new project, but the project do not have its name, so we suggest save the project and name it.

2.2 Input Control Point

We should input control points before start surveying, There are two different ways of import: Manual Entry and Auto Import.

Click File \rightarrow Import \rightarrow Manual Entry, see the shown figure above.
The default name of the point is Pt1, and it will be automatically accumulated according to the former point. We input 4 points as the following excel.

Pt no.	Pt name	X	Y	Z
1	Pt1	100	200	22
2	Pt2	200	200	22
3	Pt 3	300	80	21
4	Pt4	250	40	20

After inputting, Click \oplus you can see the following figure with four control points:

Control points

2.3 Occ \& BS Set

Click Meas \rightarrow Occ \& BS Set, you will get the following figure, there are two ways BS Orientation and Azimuth Orientation, here we choose the BS Orientation.

Input the Occ, BS, and inst.Ht then aim the BS point and click the \square key. Then you can see an Occ point $\stackrel{N}{\text { N }}$ and a point on the screen. See the following figure.

Occ \& BS set

2.4 Meas \rightarrow X-sect

Click Meas \rightarrow X-sect, then you get the following figure.

X-sect
As the figure shown above, input or select the name of the road. Also see Edit \rightarrow Alignment to know how to define a road. Input chainage, click Next: obverse center line point, you will get the following figure: "middle chainage".

Input the code and Prism height turn the total station to the prism on the middle chainage, click Meas, you will get the figure shown above: "Middle chainage". Click browse, you will get the dialog: "raw data for x-sect", see the following figure. Click Last step: transect set, you will get the following dialog "transect mesa", now you can go on with the next middle chainage. Click Next step: Transect Point Measurement, the data in the figure "Middle Chainage" will be saved in the "Transect Meas" dialog. Click Resetup the system will make it turn back to the interface of Occ \& BS.

Last step:transect set
Next step:transect point measurement

Middle Chainage

Input the code and prism height, then aim the total station at the prism on the middle chainage, Click Meas; you will see the following figure: "Transect Data" click Browse; you can check the raw data, as shown in the figure "Raw Data for X-sect" below. click Last step: middle chainage Meas, you will turn back to the dialog" Middle Chainage". Click Save transect point measurement, the observation data will be saved.

Transect Data
Caution: When you edit the code which is the same as the code of chainage, you will get the following dialog.

Prompt Dialog Box 1
When the code you need to edit has been existed. you will get the following dialog:

Prompt Dialog Box 2
Click "Yes" button, the existing data will be covered, click "No" button, it will turn back to the Meas. interface, you can change the code and save it.

Click the "browse" button; you can check the information of all the points

3. Meas \rightarrow REM

Meas \rightarrow REM

Click: Meas \rightarrow REM, see the following figure: "REM"

REM

Input the prism height, aim the station to the prism, and click the Observation button in the Aim at the prism part. then you will get the VA and SD value, see the figure" Observation Data with Prism".
Turn the station and aim the target point, click the Observation button in the Aim at Target Part. Then you will get the VA and SD value, see the figure: "Observation Data without Target".

Observation Data with Prism

Observation Data of Target

4. Meas \rightarrow Coord

Setting Occupied Point

As the figure shown above, input the point number: Pt4, P.Ht: 1.5, aim to the prism.

Choose
\longleftarrow Coord and click mesa, the system will work out angle, distance as the following figure shows:

Click Rec., you can save the data, and then Rec. button becomes unavailable, till new data is collected.

5. Edit \rightarrow Coord Data

Edit \rightarrow Coord Data

Click: Edit \rightarrow Coord Data, you will get the following figure: "Coord Data"

Coord. Data
Delete Coord. data: Click the point you want to delete (for example: Pt1).See the following figure: "Delete Coord Data", then click Delete, the point you selected will be deleted.

Edit Coord. data: Double click the point then the software will show you the dialog of Coord Editing, as shown in the following figure "cord edit". You can edit the point name and the value of the point here

Delete Coord Data

6. Edit \rightarrow Alignment Data

6.1 Edit \rightarrow Alignment Data

Click Edit \rightarrow Alignment Data, you will see the following figure "road data".

Road data
The left of the dialog will show you the existing road in the current project, see the figure shown above. The window on the top-right corner will show you the graphic horizontal alignment. The lower right corner will show you the graph of vertical alignment.

Del.: delete the road data.
Edit: edit the road you select.
Add: add a new road.
Import: import a road into the station.
Export: export the selected road (*.rod).

6.2 Add Road

Click Add in the dialog "road data", you will get the following figure: "Add Road".

Input the name of the road, for example: road1, choose "Vertical curve" under V-Sect type, see the following figure: "V-Sect type" click Ok you will see the interface "Add the Start Point", if you haven't input the road name, the system will ask you for it.

V-Sect Type

Add the Start Point

6.3 Edit the Start Point of the Road

As the figure shown above "add the star point", there are two ways of inputting start point: first, select the point in the list, second, in put the point manually.

Point No.: point number

Point Name: point name
$\mathrm{N}: \mathrm{X}$ coordinates.
E: Y coordinates.
Z: Z coordinates.
Chainage: chainage, unit: m .
Click List, you will get the following figure "Select the Start Point of Road" here, you can select a start point, for example: we choose point 1 , now the data is added in, as shown in the following figure: "Start Point of the Road"

Browse coord data				
Pt	Pt $\mathrm{N} .$.	N	E	z
11	PT1	0.0000	0.0000	0.0000
2	PT2	-32.8084	-32.8084	0.0000
3	PT3	0.0000	-32.8084	0.0000
1)				-
				Delete

Select the Start Point

Start Point of the Road

Input the chainage of the start point, for example: 300. Click save, the system will turn to the interface of: "Horizontal alignment inputting".
Caution: No matter you input the cord of start point with hands or select it in the list you must click save. If you didn't input the value of the points, just click save, the Coord will be saved like this: $\mathrm{N}=0, \mathrm{E}=0, \mathrm{Z}=0$. Chainage $=0$.

Horizontal Alignment Inputting

6.4 Edit Horizontal Alignment

Horizontal Alignment data includes: Points, line, arc, curve. See the figure above "Horizontal alignment inputting". Del.: Delete the Horizontal Alignment data. Edit: Edit the horizontal alignment data.

Insert: Insert point, line, arc, and curve.
Add: Add point, line, arc, and curve.
Click Add, here we add "line" into horizontal alignment data, choose line in the interface: "Choose Horizontal Alignment", system will show you the figure "input line"; here you can set the length and azimuth. Click $\overline{\mathrm{OK}}$, save the data and turn back to the interface: "Horizontal alignment inputting". Click X , the data will not be saved but the system still turns back to the inputting interface. When the data is added successfully the system will show you the figure on the screen.

Choose Element of Horizontal Alignment

In the interface: "Choose Horizontal Alignment Data" click Arc, the system will show you the figure "Input Arc", Radius and length, in the Turn list choose "Left", click OK, save the data and turn back to the interface "Horizontal alignment inputting",
click X . the curve data will not be saved and it will automatically turn back to the figure "Input Arc".

Input Arc

In the interface: "Choose Horizontal Alignment Data" click "curve", you will get the following figure "Input Curve". Here you can input Radius and Length; in the Turn list choose turn left. Click OK , save the data and turn back to the interface: "Horizontal alignment inputting".

Input Curve
In the interface: "Choose Horizontal Alignment Data" click "Point", you will get the interface of "Input Point". There are two ways of inputting points: First, Input the data manually. Second, input the data by clicking the Select from list button, then you will get the following figure: "select the point", now double click the point and input radius, Former transitional curve length, and latter transition curve length. Click OK, save the data and turn back to the interface of "Horizontal Alignment Inputting".

As shown in the following figure: "Data of H AL" you can see the graph. Add, Edit, Insert, Del can help you to edit, insert, and delete the data.

6.5 Edit Vertical Alignment Data

The Vertical Alignment Data includes: intersection, Elevation, and Distance. See the following figure.

Data of V AL

Add: Add a new line for inputting vertical alignment data.
Insert: Insert a new line for inputting vertical alignment data.
Delete: Delete the vertical alignment data.
Save: Save the vertical alignment data, we suggest you to save the data.
Click Add, the system will show you the interface "Add vertical data" now click the white space in the line and input the data with keyboard. See the following figure: "Vertical alignment data inputting". We input a group of vertical data according to the
following excels:

Intersection	Elevation	distance
400	40	60
500	35	50
600	25	70
700	30	60

Add Vertical data

Vertical alignment data inputting

After you input all the data, click Save. You will get the following figure. "Data of vertical alignment".

Data of Vertical Alignment

After we add all the vertical alignment data, we can enter the transect part by clicking "transect"; you will get the following figure "Transect".

6.6 Edit Transect

Transect data includes: chainage, left side model, right side model.
Add: Add a blank line for inputting the transect data.
Insert: Insert a blank line for transect
Del.: Delete the transect.
Save: Save the transect data. After you edit the transect data, please save before continuing.
Template: Add new template, check the original template and edit the current template.

Click Template, you will get the following figure: "section template". section template data includes: section name, horizontal offset, gradient $\%$, vertical offset distance.
New: Create a new template.
Delete: Delete the template.
Save: Save the template.
Add section: Add new section.
Del. section: Delete section.
Input the section name, and click New, you will get the figure: "Create new section template".

Section template \times						
Template name		$\nabla \mathrm{N}$	New	De	el	Save
Section r	Horizont ${ }^{\text {a }}$	Gradient ${ }^{\text {c }}$	'Vert			กce

Section template

Click OK in the interface of "create new section template "then click Add section, you will get the following figure: "add section". Input the section name (default value is Z1):

Horizontal offset: 12

Vertical offset: 2.5
Gradient\%: 0.3; Select Up; see the following figure" Z1 section".

Add section

Section Z1

Click OK, add the Z 1 section, and continue with the new sections.
Z2: horizontal offset: 3 , vertical offset: 2.5 , and choose Down button.
Z3: horizontal offset: 5, vertical offset: 0 , and choose Up button.
Now we create a new template, its name is sect1. See the following figure: "Section 1"

Section 1

Section template \times					
Template name 1		$\checkmark \mathrm{N}$	New D	Del	Save
Section	Horizont	Gradient ${ }^{\text {c }}$	Verticle ¢		
Z1	12	-2.500	-0.300		wat

Section 1 (with figure)

In the figure: "Transect" shown above, click Add, you will get a window: "Add Transect". Here you can input chainage and click the blank under right/left model setting you will get the interface: "select template" and now choose section 1 form the list, click OK, see the following figure: "Transect data".

Select template

Transect data.
Click Calculate the road points tab; enter the interface of "Calculate the road point".

Calculate the road point

6.7 Calculate the Road Point

Road point include: middle point, right point, left point, added chainage, added integer chainage.
Select middle Pt and added chainage, input increment, click Calc.; the software will work out the point and show you on the screen.

7. S.O. \rightarrow Radiation

7.1 File \rightarrow Import

Also see Meas \rightarrow X-sect \rightarrow Input Control point

7.2 Meas \rightarrow Occ \& BS

Also see Meas \rightarrow X-sect \rightarrow Occ \& BS.

7.3 S.O. \rightarrow Radiation

Click S.O. \rightarrow Radiate menu, you will get the following figure: "Radiate":

S.O.	Pick	P.Ht	
Information	S.O.	\mathbf{x}	
HA: $225^{\circ} 00^{\prime} 00^{\prime \prime}$	Angle diff:		
VA:334 $14^{\prime} 15^{\prime \prime}$	Dist. diff:		
SD:	H diff:		
Right:	N:		
Forward:	E:		
Up:		Z:	

Radiate
Click Pick, here is a dropdown list, see the following figure:

From List: once user clicks list select button, coordinate view dialogue box would pop up, use pen to click the coordinate item needed to setout, selected setout point name would be shown in setout point input box. The angle offset between setout point and zero direction would be shown on $2^{\text {nd }}$ area of information display area at downside of the screen. As picture showed "Setout 1":

Interface instruction: in graph "Setout 1 ": " 1 st area" is for Occ information, displaying azimuth, zenith and SD; " 2 nd area" is for offset display area, showing the offset of the Setout point and real point about angle, distance and elevation. When each item is zero, that means real observing point and Setout point are same point; "3rd area" is for controlling. Find out the accurate point in practical field by moving prism upward, forward, leftward or rightward. When the value is negative that delicates it should be moved toward opposite direction; " $4^{\text {th }}$ area" is for coordinate display which include showing northing coordinate, easting coordinate and elevation in real time.

Setout 1
Rotate telescope to make angle offset close to zero, then the direction telescope aim at is the direction where the Setout point is. After inputting prism height, put prism on the direction corresponding to telescope's direction. Click "S.O." after sighting prism. As picture shows "Setout 2":

Setout 2
Repeat steps of "Move prism \rightarrow Click S.O.", until each index reaches required conditions.

8. S.O. \rightarrow Point

8.1 File \rightarrow Coord Import

See Meas \rightarrow X-sect \rightarrow Input the Control Point for details.

8.2 Meas \rightarrow Occ\& BS Set

See Meas \rightarrow X-sect \rightarrow Occ \& BS Set for details.

8.3 S.O. \rightarrow Point

Click S.O. \rightarrow Point, you will get the following dialog.
The interface of point setout is same as interface of radiation setout; refer to the "Interface Introduction" for the information of each area.

Type 3 oint ${ }^{\text {and }}$	P.Ht		
HA: $225^{\circ} 00^{\prime} 01^{\prime \prime}$	VA: $334^{\circ} 14^{\prime} 15^{\prime \prime}$		
Result -			
SD:		Angle diff: $233{ }^{\circ} 20^{\prime} 40^{\prime \prime}$	
HD:		HD diff:	
H diff:		SD diff:	
Forward:		$\mathrm{N}:$	
Right:		E:	
Up:		Z:	
	Design	Meas.	Close

Designed value: Click "Design", you will get the following dialog:

Input coord of designed Pt

Select setout Pt

1. Input the coordinate of the setout Pt directly. Users can input coordinates of the setout Pt into Input coord dialog, click OK to start setting out. (The coordinate won't be saved in this method.)
2. Click "Pick", the selecting dialog of LIST and ADD Coord will show at the bottom of Input coord interface, see figure "Select setout Pt".

Meas: to carry out measuring of distance and angle, calculate and show the difference between the designed point and real-measured point according to the input designed data. See figure "Calculated result of Pt setout".
Rotate the telescope to make the Angle diff. as 0 , then the current direction in which the telescope is shooting is the direction of the setout Pt. Then after inputting prism height, place the prism in that direction. Use telescope to collimate the prism, then click "Meas", repeat the operation of "moving prism \rightarrow Measuring", until each indexes meet the precision requirement of setout, the Pt setting out is finished.

Close: to quit the Pt setout interface.

9. S.O. \rightarrow Line \rightarrow Poly Line

Principle; Use starting point and ending point to define a line segment, use the measured result to make the setout point on the defined line segment.
Steps: Same as Pt setout.

S.O. \rightarrow Line \rightarrow Poly Line

Click S.O. \rightarrow Line \rightarrow Poly Line, you will get the following dialog.

The interface placement of line segment setout is same as radiation setout; refer to the "Interface Introduction" for the information of each area.

Designed value: click "Design", you will get the following dialog, see figure "Input line design parameter."

Input line design parameter

1. Input coordinates of starting Pt and ending Pt directly: Users can input coordinates of the setout segment into Input coord dialog, click OK to start setting out. (The coordinate won't be saved in this method.)
2. click "Pick", the selecting dialog of LIST and ADD Coord will show at the bottom of Input coord interface, select or add the coordinate of starting Pt or ending Pt which are used to define a segment, see figure "Segment info", and click $\overline{\mathrm{OK}}$ to start setting out.

Segment information
Meas: to carry out measuring of distance and angle, calculate and show the difference between the designed segment and real-measured point, according to the input designed data. See figure "Calculated result of line segment setout".
Repeat the operation of "moving prism \rightarrow Measuring"; until each index meets the
precision requirement of setout, the line segment setting out is finished.
Close: to quit the line segment setout interface.

Type Section -	P.Ht 1				
HA: $225^{\circ} 000^{\prime} 01^{\prime \prime}$	VA: $334{ }^{\circ} 14^{\prime} 15^{\prime \prime}$				
Result					
SD:6.3714 Ft		Start-foot HD:Overflow Start-foot SD:Overflow Foot height:Overflow			
HD:6.3714 Ft					
Ele. diff:5.7381Ft					
Pt-slope HD:Overflow Pt-slope HD:Overflow Pt-slope Dist.Overflow	$\begin{aligned} & \mathrm{N}: 1.9582 \mathrm{Ft} \\ & \mathrm{E}: 1.9582 \mathrm{Ft} \\ & \mathrm{Z}: 2.4573 \mathrm{Ft} \end{aligned}$				
	Design	Meas.	Close		

Calculated result of line segment setout

10. S.O. \rightarrow Line \rightarrow Arc

Principle: Use starting Pt, ending Pt and any Point on the arc to define an arc. Refer to measurement result to make the setout points on the defined arc.
Steps: same as line segment setout.

S.O. \rightarrow Line \rightarrow Arc

Click S.O. \rightarrow Line \rightarrow Arc, you will get the following dialog:

The interface placement of arc segment setout is same as radiate setout; refer to the "Interface Introduction" for the information of each area.
Designed value: Click "Design", you will get the following dialog. See figure "Input arc parameter":

Input arc parameter

1. Input coordinates of starting Pt, ending Pt and any one Pt on the arc directly. Users can input coordinates of the setout arc into Input Coord. dialog; click Yes to start setting out. (The coordinate won't be saved in this method.)
2. Click "Pick", the selecting dialog of List and Add Coord will show at the bottom of Input coord interface, select or add the coordinate of start Pt , end Pt and one discretional point on the arc which are used to define an arc, see figure "Arc information", and click Yes to start setting out.

Arc Information

Meas: to carry out measuring of distance and angle, calculate and show the difference between the designed arc and real-measured point, according to the input designed data. See figure "Calculated result of arc setout".
Repeat the operation of "moving prism \rightarrow Measuring"; until each index meets the precision requirement of setout, the line arc setting out is finished.
Close: to quit the arc setout interface.

Type Circular \quad		P.	1
HA: $225^{\circ} 00^{\prime} 00^{\prime \prime}$	VA:334* $14^{\prime} 13^{\prime \prime}$		
$\left[\begin{array}{l}\text { Result } \\ \text { SD: } 6.3678 \mathrm{Ft} \\ \text { HD: } 6.3678 \mathrm{Ft} \\ \text { Ele. diff:5.7348Ft }\end{array}\right.$		Can not calculate with Pt-slope HD:	
FootN: FootE:		$\begin{aligned} & \mathrm{N}: 1.9571 \mathrm{Ft} \\ & \mathrm{E}: 1.9571 \mathrm{Ft} \\ & \mathrm{Z}: 2.4540 \mathrm{Ft} \end{aligned}$	
	Design	Meas.	Close

11. S.O. \rightarrow Plane \rightarrow Slope

Principle: define a slope, according to starting point, ending point, elevation, gradient and direction of slope.

Steps: Same as Arc Setout.

S.O. \rightarrow Plane \rightarrow Slope

Click S.O. \rightarrow Plane \rightarrow Slope, you will get the following dialog:

Designed value: Click "Designed value", you will get the following dialog:

1. Input coordinates of starting Pt, ending Pt, elevation, gradient and direction of slope directly. Users can input coordinates of the setout slope into Input coord dialog, click Yes to start setting out. (The coordinate won't be saved in this method.)
2. Click "Pick", the selecting dialog of List and Add Coordinate will show at the bottom of Input coord interface, select or add the coordinate of starting Pt, ending Pt, elevation, gradient and direction of slope which are used to define a slope, see figure "Slope info", click yes to start setting out.

Meas: to carry out measuring of distance and angle, calculate and show the difference between the designed slope and real-measured point according to the input designed data. See figure "Calculated result of slope setout". Repeat the operation of "moving prism \rightarrow Measuring", until each indexes meet the precision requirement of setout, the plane slope setting out is finished.

Close: to quit plane slope setout interface.

Calculated result of slope setout

12. S.O. \rightarrow Plane $\rightarrow 3$ Pts plane

Principle: Define a plane with three points.

Steps: Same as slope Setout.

S.O. \rightarrow Plane \rightarrow 3 Pts plane

Click S.O. \rightarrow Plane $\rightarrow 3$ Pts plane, you will get the following dialog:

Type ${ }^{\text {andmew }}$	P.Ht		
HA: $2233^{\circ} 46^{\prime} 18^{\prime \prime}$	VA:338* $11^{\prime} 09^{\prime \prime}$		
$\text { \| } \begin{aligned} & \text { Result }- \\ & \text { SD: } \\ & \text { HD: } \\ & \text { H diff: } \end{aligned}$	Gradient: 1:		
Pt-plane HD Pt-plane VD Pt-plane Perp.D	$\mathrm{N}:$ E: Z:		
	Design	Meas.	Close

Three Pts plane
Designed value: Click "Designed value", you will get the following dialog:

Input parameters

1. Input coordinates of point 1 , point 2 , and point 3 directly. Users can input coordinates into Input coord dialog, click Yes to start setting out. (The coordinate won't be saved in this method.)
2. Click "Pick", the selecting dialog of LIST and ADD Coord Will show at the bottom of Input coord interface, select or add the coordinate of point 1, point 2, point 3 which are used to define a plane, click yes to start setting out.

Meas: to carry out measuring of distance and angle, calculate and show the difference between the designed plane and real-measured point according to the input designed data. See figure "Calculated result of three Pts plane setout". Repeat the operation of "moving prism \rightarrow Measuring", until each index meet the precision requirement of setout.

Close: to quit three Pts plane setout interface.

Calculated result of three Pts plane setout

13. S.O. \rightarrow Plane \rightarrow Arc plane

Principle: define an arc plane according to three points.

Steps: Same as slope Setout.

S.O. \rightarrow Plane \rightarrow Arc plane

Click S.O. \rightarrow Plane \rightarrow Arc plane, you will get the following dialog:

	P.Ht		
HA: $2233^{\circ} 46^{\prime} 18^{\prime \prime}$	VA:338* ${ }^{\circ} 1^{\prime} 09^{\prime \prime}$		
SD: HD: H diff:	Pt-slope HD:		
Pt-plane HD Pt-plane VD Pt-plane Perp.D	$\begin{aligned} & \mathrm{N}: \\ & \mathrm{E}: \\ & \mathrm{Z}: \end{aligned}$		
	Design	Meas.	Close

Arc plane Setout

Designed value: Click "Designed value", you will get the following dialog:

Input parameters

1. Input coordinates of starting Pt, ending Pt, any pt on arc line, elevation of arc line, gradient, and direction of plane directly. Users can input coordinates of the setout arc plane into Input coord dialog, click Yes to start setting out. (The coordinate won't be saved in this method.)
2. Click "Pick", the selecting dialog of LIST and ADD Coord will show at the bottom of Input coord interface, select or add the coordinate of starting Pt, ending Pt, any pt on arc line, elevation of arc line, gradient, direction of plane which are used to define a arc plane, see figure "Arc plane info", click Yes to start setting out.

Arc plane info

Meas: to carry out measuring of distance and angle, and calculate and show the difference between the designed plane and real-measured point according to the input designed data. See figure "Calculated result of arc plane setout". Repeat the operation of "moving prism \rightarrow Measuring", until each indexes meet the precision requirement of setout.

Close: to quit arc plane setout interface.

Calculated result of arc plane setout

14. S.O. \rightarrow Road

Principle: define a road with designed road data.
S.O. \rightarrow Road

Click S.O. \rightarrow Road, you will get the following dialog:

Road layout	\times
	Road
	$\text { Chainage } \square \mathrm{Ft}$
	Right 0 Ft
	$\begin{aligned} & \text { HA: } 223^{\circ} 46^{\prime} 18^{\prime \prime} \\ & \text { VA: } 338^{\circ} 11^{\prime} 09^{\prime \prime} \end{aligned}$
	Information
	View Pt position
	Layout

Road Setout
(1) Select road needed to setout from the dropdown list, as picture shown below:

Road layout	\times
	Road \rightarrow New
	Right 0 Ft
	$\begin{aligned} & H A: 223^{\circ} 46^{\prime} 18^{\prime \prime} \\ & \text { VA: } 338^{\circ} 11^{\prime} 09^{\prime \prime} \end{aligned}$
	Information
	View Pt position
	Layout

Selecting road

After selecting, plane map of road would be drawn on the screen as shown below:
(2) Input Setout chainage in chainage edit box
(3) Select leftside or rightside of the midline. If leftside is selected. Click Right, and then if user needs to go back to rightside, click that button again. Input the distance between point and midline.
(4) Click Information, as "Road Setout information" interface shown below.
(5) Click Layout point position, as picture shown below:
(6) Click Layout, as picture shown below:

Road layout	\times
9	Road road: New
	Chainage $\sqrt{10} \mathrm{Ft}$
	Right ${ }^{\text {a }} \mathrm{Ft}$
	HA: $2233^{\circ} 46^{\prime} 17^{\prime \prime}$
	VA:338 ${ }^{\circ} 11^{\prime} 09^{\prime \prime}$
	Information
	View Pt position
\int	Layout

```
Road layout info. x
    Overall length:1100.0000Ft
    Coord of design layout point:
    N=100.3077
    E=6.1946
    Z=36.6250
No transect model at layout point or over the transect model, elevation is subject to midchainage elevation of this chainage!
Road Setout information
```


Layout point position

(7) Click S.O. in road Setout. Carry out measuring of distance and angle, calculate and show the difference between the designed chainage and real-measured point according to the input designed data. See figure "Calculated result of road setout". Repeat the operation of "moving prism \rightarrow Measuring", until each index meet the precision requirement of setout.

Calculated result of road Setout

15. Function Introduction

15.1 File Menu

File Menu

1. New Project

Function: Create a project file with suffix * .prj.
Operation: Click File \rightarrow New, the system creates a blank job.
Note: When you create a new project during viewing last project, the system will ask whether to save project. Click Yes or No according to the needs.

2. Open project

Function: Open an existed project file with suffix * .prj.
Operation: Click File \rightarrow Open, you will get the following dialog, see figure "File selecting dialog" select the project file you need.

Note: System will shut the current project off when you open a new project. Note to save the work.

3. Save

Function: Save current project.
Operation: Click File \rightarrow Save, the system will save the project in your selected file route, with the format of *.prj. See figure "Save file":

Note: If this is the first time to save the project, system will ask you to select a proper file name for the project. (see figure "Save file"). When saving a project, users must save data into the disc directory of Genius software, i.e.: "SouthDisk". If the data is saved to other directory, it will be cleaned out after removing the battery.

4. Save as

Function: Save the current file with another name.
Operation: Click File \rightarrow Save as, you will get the "Save as" dialog. Save it with a proper file name.

Note: When saving the file with another name, the project must be saved into the
"SouthDisk" directory.

5. Coord Import

Function: Import the known coordinate to current project file. There are two methods to input: Manually Entry and Auto Import.
Operation: Click File \rightarrow Import \rightarrow Manual Entry, you will get the following dialog, input the Pt name and coordinates and then click OK, The input data of Pt coordinate will be saved to Project coordinate database. The system prompts to input the next point. After inputting coordinates, click \boxtimes to quit Input Coord

Input Coord

Click File \rightarrow Import \rightarrow Auto Import, you will get the following dialog, select the data file (*.dat) which you need to import into this project. Click OK to confirm the importing. See figure "Open coord data":

Open coord data

6. Export

Function: Export coord data file to create CASS coord data file (*.dat)
Operation: Click File \rightarrow Export, you will get the Save as dialog, input the file name, and then the coord data can be saved as *.dat format.

7. Exit

Function: to quit this software. System will give prompt to ask if you really need to save current project.

15.2 Meas Menu

1. Occ \& BS Set

Before collecting or setting out data, occupied point and backsight point must be set; otherwise all measured coord data are incorrect. Before Occ \& BS Setting, known points have to be input first.
There are 2 ways to set the Occ \& BS points: BS Orientation and Azimuth Orientation.

BS Orientation:

Click: Meas \rightarrow Occ and BS Set, you will get the following dialog, see figure "BS Orientation", Select BS Orientation, the cursor first locates in Occ editing box. There are two ways to input Occ Pt: one is to press the numeric keys on the display board to input directly. If the Pt\# doesn't exist, after clicking ∇, there would be a Notice: "Occ coordinate does not exist! Need to input manually?". The other one is that using the pen to select known point or control point on the touch screen. This requires zooming out the Occ Pt and BS Pt to current view. The two methods can be used to input BS point.

During orientation, the Inst. Ht is default as 1.5 m , use steel tape to measure the Inst. Ht. accurately, and input this accurate value to the Inst. Ht item.
After inputting, rotate the telescope to sight the orientation Pt precisely, click \downarrow to finish Occ \& BS orientation. System will prompt: "Occ has been set successfully......", and then an Occ symbol shows at the occupied point, and a dotted line appears to connect occupied point and orientation point, indicating that orientation has been finished.

If there are checking points (known points), you can check Occ Pt and orientation Pt. See figure "Check Occ Pt". Input Occ Pt, BS Pt and check Pt, and then click ∇ before Check, system prompts "1. Sight check point. 2. Press "OK" to start checking. See figure "Check Notice". Press OK to return to check result, see figure Check result. If the check result is disqualified, click No, system will return to the interface of Check Occ Pt. Users can adjust the telescope and do the Occ Pt checking again. Repeat this until the checking result is qualified, and then click Yes to finish Occ Pt checking.

Check Occ Pt

Check Notice

Check result

Azimuth Orientation:

In the Occ Pt checking box select Azimuth Orientation, see figure "Azimuth Orientation", the BS changed into Azimuth, which requires to input BS azimuth as per the format of "degree, minute, second" manually. Other operations are same as BS Orientation.

Azimuth Orientation

2. X-Sect

After setting Occ, click Meas \rightarrow X-Sect, as graph ' X-Sect':

Setting occupied point before measuring transect. After that, click Meas \rightarrow X-Sect, then get into window of measuring transects.
At the first time of measuring transect, user can input number of the road needed to measuring transect in the road list. Then input chainage in rightside chainage box, such as "Set road and chainage":

Set road and chainage

Click "Next: observe center line point" to get into midchainage observing window, as "Midchainage observing":

After inputting chainage code and prism height, rotating telescope to sight at prism on midchainage, click "Next: observe center line point". Window will show the observing result when measuring step is over, as picture show "Midchainage measuring results":

After measuring midchainage, click "Next step: transect point measurement" to get into the measuring step for transect point, as picture shows "Transect observing":
If at this time, it is required to reset transect, click "Last step: Transect set", system will save the transect data already measured, and to enter into next transect observing step.
If at this time, user finds that error of Occ setting or Occ has been changed, you can click "Resetup" to get back to Occ setting window. After user sets Occ correctly, system will get back to "Midchainage observing" dialogue box.

When observing the transect, transect point code will accumulate automatically and user can change the code and prism height.
After rotating the telescope to sight prism put on transect, click "Meas" to enter into window for transect point observing. When a transect point measurement is completed, click "Save transect point measurement" to save the observing data. System will show automatically next window for transect observing, code will accumulate 1 ; prism height will be the same as last time.
Notice: If user has changed code, and code is the same as midchainage code, system will pop up a notice box, show as picture "Notice 1 ".

Notice 1

If user has changed code, and the transect code has already existed at former transect code, system will also pop up a notice box, show as picture" Notice 2".

Notice 2

Clicking "Yes" will cover all of the measured data, if click "No", system will turn back to transect point observing window to wait for modifying code and save transect observing data again.
Click "Browse" in window of transect observing, all of the Occ and observing information could be viewed. Click " \times "to quit transects observing.

3. REM

Click Meas \rightarrow REM to get into remote height window, show as picture "REM":

In REM dialogue box, default prism height is empty; user can change the prism height.
First step: Rotate telescope to sight at the prism on basic point and click "Observation", system will show back the vertical angle and SD of prism, as picture shows "Sight prism":

Sight prism
Second step: Rotate telescope to sight the point needed to observe, click "Observation", system will show back the vertical angle of observing point and show the result of the height of observing point. Show as picture "Calculation results":

Calculation results

Notice: If user need to change the prism height after calculation result showed, then need to click "Observation" to recalculate remote height.

4. Coordinate recalculation

This function recalculates coordinate data of drawing graph, according to raw data. User should use this function to recalculate coordinate after modifying error of raw data.
Click menus in turn: Meas \rightarrow Inverse, as graph "Inverse menu" below:

Inverse menu

Dialogue box showing as below will pop up:

Click "Yes" to recalculate, click "No" to turn back to software main window.

5. Centering the Occ

In measuring process, surveyor usually needs to find the location of Occ quickly. Click Meas \rightarrow Occ In The Center, current Occ would be centered and shown on screen. The display scale would be the same as before. As picture shows below:

6. Centering point

This function could make the last measured point centered and shown on screen.
Click menus in turn: Meas \rightarrow Current Pt in The Center, as picture shown below:

At this time, the 4th point measured would be centered and shown on screen, shown as picture:

Center and display point

15.3 Edit menu

Edit menu

15.3.1 Coordinate data

Click Edit \rightarrow Coord data, show as picture below:

Edit menu for coordinate data

Click "Coord data" to get into view coordinate dialogue box, shown as picture below:

View coordinate data
Contents shown in "View coordinate" window by sequence are point number, point name, coordinate X , coordinate Y , coordinate Z . Use pen click one of coordinate records. System will pop up edit window of this coordinate record, as picture shown below:

Edit coordinate
User could edit the point name and coordinate of this point with coordinate edit window.

Click "OK" to confirm edit after modifying the coordinate and turn back to coordinate view dialogue box or click " \times "directly to cancel edit and turn back to coordinate view dialogue box.
If user needs to delete one coordinate record, could use pen choose this record, and click "Delete" in coordinate view window to delete record.

15.3.2 Raw Data

Click Edit \rightarrow Raw data, as picture showed below "View raw data":

Occ information, position information and sight point information of project are included in raw data view dialogue box. Date in dialogue box only can be viewed, not be modified.

If there is no raw data record before, the view dialogue box will show as below:

No raw data

15.3.3 Fill-Cut Data

Click Edit \rightarrow Fill-Cut Data, as picture "Fill-Cut Data" show:
User can select the road and chainage needed to view from the "Road name and chainage" dropdown list. Corresponding Occ information and each transect point observing information would be showed at synchronizing data display area downside of screen.

Notice: Data in dialogue box can only be viewed, not be modified.

15.3.4 Alignment Data

Click Edit \rightarrow Alignment Data, design window for road will pop up, as picture show "Road design".

In road design window, functions of four icon downside from left to right are: Del.: delete the road design data user selects. Edit: edit and modify the horizontal and vertical alignment of road user selects. Add: add one road alignment data. Import: input road design data from files. (Suffix of road design is rod, please refer to "Appendix A: File forms for Engineering genius" about rod form.). Export: export the selected road design data and save them as file form.

Add road design data:

Refer to "Edit \rightarrow Alignment Data)" to get more details

Export road design data:

Choose the road name needed to export, as picture "Select road" shows. Use pen to select the road needed to export from road name list. When one road is selected, chose road name would be brighter, and the horizontal, vertical alignment graph would display. Click Export, system would pop up a "save as" dialogue box, input the file name needed to export at the name box. As: Road 1, as picture showed below:

Select road

Export road name

Edit road design data:

Refer to "Edit \rightarrow Alignment Data" to get more details

Delete road design data:

Select road name needed to delete from road list, as picture showed "Select road". When one road is selected, chose road name would be brighter, and the horizontal, vertical alignment graph would display. Click Del., Notice dialogue box would pop up, as picture showed below. OK Delete, X Cancel.

Import road design data:

In picture "Road design", click Import; "Open file" dialogue box would pop up.
Select the file name needed to import, click Open:

If there is same file in imported files as the road name in road name list, dialogue "Same road name" would pop up automatically, and modify the road name in imported files. OK Continue, X Cancel.

15.4 S.O. menu

Notice: Before Setout starts, user must complete setting Occ correctly. If still not set Occ, system will notice that needing user to set Occ first when any Setout function is clicked. Showed as picture" Set Occ notice"

Set Occ notice

Select "OK", system would enter into Occ set automatically, if choose "X", system would give up setting Occ and turn back to main menu directly.

15.4.1 Radiate Setout

Function: set equipment at one reference point, get accurate position information of known point according to the angle from the line passes through known point and Occ to zero direction of Occ and the distance from Occ to known point.

S.O.	Pick	P.Ht	
S.O.	X		
Information	S.		
HA:225 $00^{\prime} 00^{\prime \prime}$	Angle diff:		
VA:338 $11^{\prime} 09^{\prime \prime}$	Dist. diff:		
SD:	H diff:		
Right:	N:		
Forward:	E:		
Up:			

Radiate Setout

Click Select at rightside of Setout point input box, Setout point choosing dialogue box would pop up under the Setout point input box, as below:

Refer to "S.O. \rightarrow Radiate" to know more about details.

15.4.2 Setout point

Click S.O. \rightarrow Point. As picture "Setout point menu" showed.
Refer to "S.O. \rightarrow Point" to know more about details.

Setout point menu

15.4.3 Setout line

Click S.O. \rightarrow Line. As picture "Setout line menu" shows.
Refer to "S.O. \rightarrow Line \rightarrow Poly Line", "S.O. \rightarrow Line \rightarrow Arc" to know more about details.

Setout line menu

15.4.4 Setout plane

Click S.O. \rightarrow Plane. As picture "Setout plane menu" showed.
Refer to "S.O. \rightarrow Plane \rightarrow Slope", "S.O. \rightarrow Plane $\rightarrow 3$ points-plane", "S.O \rightarrow Plane \rightarrow Arc plane" to know more about details.

Setout plane menu

15.4.5 Road design

As picture shows "Road Setout menu". Click S.O. \rightarrow Road layout, graph showed as below:

Road Setout menu

Road layout	\times
	Road $1 \rightarrow$ New
	$\text { Chainage } \square \mathrm{Ft}$
	Right 0
	$\begin{aligned} & \text { HA: } 225^{\circ} 00^{\prime} 01^{\prime \prime} \\ & \text { VA: } 338^{\circ} 11^{\prime} 09^{\prime \prime} \end{aligned}$
	Information
	View Pt position
	Layout

Road Setout
Refer to S.O. \rightarrow Road layout to know more details about Setout.

15．5 Tool menu

15．5．1 COGO

File Meas Edit S．O．Tool	tup	？	国
Intersection Resection Linear intersection Angle intersection Vertical distance point Radiate Foot of perpendicular Distance line Line intersection Point on line Symmetry point			
			1.5
			Dist
	自	\checkmark	ngle
		乙	oord
		Meas	Rec．
	$8^{\circ} 02^{\prime} 40{ }^{\prime \prime}$	SD： 1.6	92 m

COGO menu

In WinMG2007 software, COGO contains Forward Intersection, Resection, Linear Intersection, Angle Intersection, Radiate, Foot of perpendicular, Distance line, Lines Intersection, Point on line, Symmetry point eleven coordinate calculating functions. Each coordinate calculating function has simple picture to instruct. System supplies manually input, capture on screen with pen and select from coordinate list three types methods to input point number at every place where to input point number.
If coordinate has already existed at the point we need to calculate, software will reserve a coordinate data which has same coordinate with the existed point. And the point number of that new point will be equal to the sum of the max number of existent point number plus one. Software will show the notice of failure if there is no such intersection.

Forward intersection

According to forward intersection, we have point 1, point 2, both of them are known points. Set occupation at these two points and get value of $\angle 1, \angle 2$, to calculate unknown point P . The mathematical model as below:

$$
\begin{aligned}
& \mathrm{xP}=\frac{\mathrm{x} 1 \times \operatorname{ctg} \angle 2+\mathrm{x} 2 \times \operatorname{ctg} \angle 1-\mathrm{y} 1+\mathrm{y} 2}{\operatorname{ctg} \angle 1+\operatorname{ctg} \angle 2} \\
& \mathrm{yP}=\frac{\mathrm{y} 1 \times \operatorname{ctg} \angle 2+\mathrm{y} 2 \times \operatorname{ctg} \angle 1-\mathrm{x} 1+\mathrm{x} 2}{\operatorname{ctg} \angle 1+\operatorname{ctg} \angle 2}
\end{aligned}
$$

As picture 'Forward intersection' shows, point 1 and point 2 are known, input angle value and click OK. Point position will be shown on the screen, new point number will be equal to the sum of the max number of existent point number plus one. As No. 5 point in picture 'Forward intersection results'.
Notice: The intersection points locate in the leftside of the direction of forward motion.

Forward intersection

Forward intersection results

Resection

According to resection, we need three known points $1,2,3$, two known angles $\alpha \beta$, click OK. Intersection position will be shown on screen, new point number will be equal to the sum of the max number of existent point number plus one. As point 6 in picture 'Resection results'.

Resection

Resection results

Linear intersection

According to linear intersection, we need to set occupation at point P, get two distances from point P to point 6 and to point 1 , to calculate coordinate of point P. As picture 'Linear intersection' shows, point 1 and point 6 are known points, input the distances from two known points to intersection point P. Click OK, Dialogue will show P number as 7. Point P position will be shown on screen m and new point number will be equal to the sum of the max number of existed point number plus one. Shown as point 7 in the picture 'Linear intersection results'.
Notice: The intersection points locate in the leftside of the direction of forward motion.

Linear intersection

Linear intersection results

Angle intersection

In practical measuring, some problems like finding no place to put prism will appear. If unknown point and the two known points are on same line, you can use this function to get point P.

Angle intersection

As picture 'Angle intersection shows points 4, 6 are known, Point 1 is occupation point, point 3 is back point. Input turn angle α and click OK to calculate point P . Dialogue box will show intersection number as 8 points position will be shown on screen. New point number will be equal to the sum of the max number of existent point number plus one. As 8 points in the picture 'Angle intersection results'.

Angle intersection

Vertical distance point

Point A, point B are known, distance between B and foot is S 1 , the distance from unknown point P to the line pass through point A and B is $S 2$, to get point P coordinate.

Vertical distance point
As picture 'Vertical distance point' show, point 1 and pint 2 are known, input distance S1, S2, click OK and get coordinate of point P. Point P's number is 4.Position of it will be shown on screen. New point number will be equal to the sum of the max number of existent point number plus one. Shown as point 4 in picture' Vertical distance point results'.

Vertical distance point results

Notice: When the sequence of point 1 and point 2 is counterclockwise rotation, let S1 be positive value, otherwise be negative value. When foot is located between two known points or on the extending line for the opposite direction of the straight line, S2 should be positive value. When it's located just on the extending line for opposite direction of the straight line, S2 should be negative value.

Radiate

Point A and B are reference points, set occupation at A and set B as start direction, get horizontal angle and distance S by measuring, to calculate point P coordinate. Show as picture 'Radiate'.

Radiate

Set occupation at point 1 , set point 2 as start direction, input the distance from pint 1 to point P and horizontal angle α, click OK , then get coordinate of point P. Point number of P point is 5 ,position will be shown on screen. New point number will be equal to the sum of the max number of existent point number plus one. As point 5 in picture 'Radiate results'.

Foot of perpendicular

Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are known points, make C as reference point, to calculate point P which is foot of perpendicular for line AB and point C .
As picture 'Foot of perpendicular' show, straight line pass through point 1 and point 2, point 5 is reference point, click OK ,then could get point P. Position is shown on screen. New point number will be equal to the sum of the max number of existent point number plus one. As point 6 in picture 'Foot of perpendicular results'.

Foot of perpendicular

Foot of perpendicular results

Distance line

Point $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are all known points, AB is a straight line, S is a distance needed to join calculation, to get the point which is on AB line and the distance from which to point C is S .

As 'Distance line' show, a straight pass through point 1 and 2.Input distance from unknown point to point 5, click OK to get point P. Position will be shown on screen. New point number will be equal to the sum of the max number of existed point number plus one. As point 7 in picture 'Distance line results'.

Distance line

Notice: According to the limitation of known conditions, this method would produce two intersections, our software will judge by choosing the one which is far from first point. When operator needs to get another point, you can change the sequence of point 1 and 2.

Lines intersection

There is one line passing through point A and point B , and another one passing through point C and point D , to calculate the intersection pint P of these two lines. As 'Lines intersection' show, one line passes through point 7 and 5 another passes
through point 1 and 4. Click OK , intersection P will be calculated. Point's position will be shown on screen immediately. New point number will be equal to the sum of the max number of existent point number plus one. Calculation result will be saved automatically as point 8 .

Lines intersection

Lines intersection results
Notice: when user inputs these four points by sequence, software will judge that whether the two lines are parallel, if they are, system would notice that "calculating failed, please check input data again."

Point on line

Point A and B are known points, a straight line passes through point A and B, P is inside point or outside point on line, S is distance from B to P , to calculate coordinate of inside point, outside point P .

Point on line
As picture 'Point on line' show, a straight line passed through point 1 and 5 , after inputting the distance from unknown point to point 5 , click OK ,point P will be calculated and shown on screen immediately. New point number will be equal to the sum of the max number of existent point number plus one. As point 9 in picture 'Point on line results'.
Notice: If the input distance is positive value, the unknown point is on positive extending line of straight line; if the distance is negative value, the unknown point is on opposite extending line of straight line.

Point on line results

Symmetry point

Point $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are all known points. Line AB passes through point A, B, then calculate symmetry point of point C about line $A B$.
As picture 'symmetry point' show, one straight line passes through point 1 and point 9 .

Point 4 is reference point. After clicking OK , symmetry point P of point 4 could be calculated. Point position will be shown on screen. New point number will be equal to the sum of the max number of existent point number plus one. Show as point 10 in picture 'symmetry point results'.

Symmetry point

Symmetry point results

15.5.2 Area computations

Area computation could calculate area of every closed polygon and area which is made by three or more points that not on same straight line. The points could be known coordinate points and also could be unknown point in graph.

Calculate area made by three points which not on same line: In area computation dialogue box, user could input coordinate point by screen capture function with pen. Also could use digital keyboard to input coordinate point. If the point is known point, the point number would be shown in display window. If the point is an unknown point. "F" would display in point number box. As picture "Area computation" described below:

Area calculation
Notice: As the differences of the coordinate point positions, the shape points make can be different. As a result, the area would be different too. So user has to input the points by correct sequence, in order to get the correct area data you want.

15.5.3 Point in Direction

Function: Calculate unknown point, according to a known point, HD and azimuth.
Steps: Click Tool \rightarrow Point in Direction, showed as graph below:

Point in Direction

Input known point, HD, azimuth and calculate with clicking OK. If select "Save calculation point", this point would be shown on screen and added to project file. As graph below showed:

Known data: Point 1; Azimuth, 180°; HD, 1. as picture showed below:

Calculation result

Click to save coordinate, as picture shown below:

Saving coordinate notice

15.5.4 Inverse

Function: calculate the horizontal distance from Occ to known point and angle from known point to BS point with Occ, BS point and one known point.

Inverse

Steps: Click Tool \rightarrow Inverse. Input Occ, BS points, known point and click Calculate to get horizontal distance and angle. Shown as the picture below:
Known data: Occ point 1, BS point 7, and known point 9. As picture "calculation result" shown.

Calculation result

15.6 Setup menu

Setting menu

15.6.1 System Setup

Click Setup \rightarrow System Setup, setting graph dialogue box would pop up, as picture "Graph setting":

Graph settings

Screen capture: The accuracy arrange of screen capture is about $1 \sim 10$ Pixels. Bigger the pixel is, larger the screen capture is. At same time, accuracy of screen capture would be lower. In order to reach the requirement of job, user could set the arrangement by them. The system default arranges is 5 pixels.

Map subdivision: Set the drawing scale and subdivision size, there are 1; $5001 ; 1000$ 1; 2000 different size and $50 \times 5050 \times 40$ different subdivisions to select. The system default drawing scale is: $1: 1000$, man subdivision is: 50×50.
Coordinate drawing style: Set display type of coordinate. System has None, Pt, Pt number, Pt name, Elevation five display types to choose. User could select the display type for showing coordinate according to their habit. System display type default is Pt name.

Coordinate selecting type: Set the searching style for choosing coordinate point. System has Pt number, Pt name two kinds of searching type to choose. User could select the display type for showing coordinate according to their habit. Searching type default in system is: Pt name.

The functions of three icons downside of the window are: 1 Battery capacity: system would display battery capacity if this function is activated; 2 North arrow: system would display north arrow if this function is activated; 3 Speedy drawing.

15.6.2 Project information

Click Setup \rightarrow Project, System info dialogue box would pop up, as picture shown "Project information"

System information
Saving path, project file name, file version and creating date of project file would be included in system info dialogue box.

15.6.3 Setup unit

Click these two options in turn Setup \rightarrow Unit Set, "Unit Set" dialog box will be shown
as below. User can set the unit of angle, distance, pressure, temperature here. For example: when angle unit is set as Gon, distance unit set as Feet, corresponding sets would be changed in the whole software.
Note: Once change the unit, system will change all of the data into the data in the unit user set.

Unit setting options

Menu	Selecting Item	Contents
1. Ang. Unit	Degree/Gon/Mil	Select degree $\left(360^{\circ}\right)$, gon (400 G) or mil (6400 M) for the measuring angle unit to be shown on the display
2. Dist. Unit	Meter/Feet/ U.S-Feet	Select the distance measuring unit Meter, Int. Feet or U.S Feet.
3. Temp.Unit	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	Select the temperature unit for the atmospheric correction
4. Pres.Unit	$\mathrm{mmHg} / \mathrm{hPa} / \mathrm{inHg}$	Select the air pressure unit for the atmospheric correction.

Measurement unit setting

15.6.4 Measurement setting

Click these two options in turn: Setup \rightarrow Measurement Set, "Measurement Set" dialog box will be shown as below:

Measurement setting

Measurement settings:

Menu	Selecting Item	Contents
1. Tilt	OFF/1 axis/2 axis	Select the tilt sensor option for OFF, (1 axis) vertical only or (2 axis) vertical and horizontal
2. Correction for atmosphere refraction	$0 / 0.14 / 0.20$	Select the coefficient correction for refraction and earth curvature. Selections for the refraction coefficient are : OFF(No Correction), $\mathrm{K}=0.14$ or $\mathrm{K}=0.20$
3.Vertical angle model	Zenith/Level	Select the vertical angle reading for Zenith 0 or Horizontal 0.

When Off is chose, Tilt will not be working with the vial plate over the range; When 1 or 2-axis mode is chose, Tilt will be working automatically with the vial plate over the range. And The Tilt dialog box pop up. This dialog box will not disappear until total station is leveled. Shown as below:

The rest functions are described in Win total station manual specifically, read Win total station manual, if want to know more.

Atmospheric Refraction and Earth Curvature Correction

The instrument will automatically correct the effect of atmosphere refraction and the earth curvature when calculating the horizontal distance and the height differences.
The correction for atmosphere refraction and the earth curvature are done by the formulas as follows:

Corrected Horizontal Distance;
$\mathrm{D}=\mathrm{S} *\left[\cos \alpha+\sin \alpha^{*} \mathrm{~S} * \cos \alpha(\mathrm{~K}-2) / 2 \mathrm{Re}\right]$
Corrected Height Differentia;
$\mathrm{H}=\mathrm{S} *\left[\sin \alpha+\cos \alpha^{*} \mathrm{~S} * \cos \alpha(1-\mathrm{K}) / 2 \mathrm{Re}\right]$

If the correction of atmosphere refraction and the earth curvature is neglected, the calculation formula of horizontal distance and the height differentia are:
$\mathrm{D}=\mathrm{S} \cdot \cos \alpha$
$\mathrm{H}=\mathrm{S} \cdot \sin \alpha$

In formula: $\mathrm{K}=0.14 \cdots \cdots \cdots \cdots \cdots \cdots \cdots$ Atmosphere Refraction Modulus
$\operatorname{Re}=6370 \mathrm{~km} \cdots \cdots \cdots \cdots \cdots$ The Earth Curvature Radius
A (or β)The Vertical Angle Calculated From Horizontal Plane (Vertical Angle)

S $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$ Oblique Distance

NOTE: The atmosphere refraction modulus of this instrument has been set as: $\mathrm{K}=0.14$. It ALS can be set as: $\mathrm{K}=0.2$, or be set shut (0 VALUE).

15.6.5 Technical supports

WinEG2007 technical support website, Address: http://www.southinstrument.com

15.6.6 Software information

WinEG2007 Version, copyright information.

Appendix A: File format of Engineering Genius

*. dat Coordinate data file
Format of coordinate data file as below;
Point 1 name, Point 1 code, Point 1 Y (East) coordinate,Point 1 X (North) coordinate, Pointl Elevation

Point N name, Point N code, Point N Y (East) coordinate, Point N X (North) coordinate, Point N Elevation

Instruction:

Each line in file indicates one point; Unit of coordinate $\mathrm{Y}, \mathrm{X}, \mathrm{Z}$ of every point is meter; comma can not be contained in code.
*.rod Road data file
Data file form is as below:
[HEADER]
ROADNAME, road1
VALTYPE, 0
[END]

[ALIGN]

START, 300.000, 488342.493, 2552134.180
STRAIGHT, 30.0000, 500.00000000000
ARC,-2000.000, 500.000000
SPIRAL,-2500.000, 300.000000
Pt, 489996.699, 2558932.226, 3500.000, 300.000, 300.000
[END]
[VLIGN]
400.000, 40.000, 60.000
500.000, 35.000, 50.000
600.000, 25.000, 70.000
700.000, 30.000, 60.000
[END]
[SECT]
400, sect1, sect1
[END]
[TEMPLATE]
TEMPLATENAME, sect1, 3
ZONE, Z1, 1, 12.000, 0.300
ZONE, Z2, 1, 3.000, 2.500
ZONE, Z3, 0, 5.000, 0.000
[END]

Instruction:
[HEADER] Road information
ROADNAME, Road name
VALTYPE, Vertical curve type (0 , vertical curve; 1 , erect curve)
[END]Road information is over
[ALIGN] Horizontal alignment
START, Start chainage, East coordinate, North coordinate (Only one start point data is allowed)

STRAIGHT, azimuth, length (straight segment)
ARC, radius, arc length (Arc section)
SPIRAL, radius, transition length (transition curve section)
Pt, coordinate east, coordinate north, radius, last transition length, next transition length (point)
[END] Horizontal alignment is over
[VLIGN] vertical alignment
chainage, elevation (gradient) , length
[END] vertical alignment is over
[SECT] transect
chainage, transect model name of road leftside, transect model name of road rightside [END] transect is over
[TEMPLATE] transect template
TEMPLATENAME, template name, section number

ZONE, section name 1, offset type, horizontal offset, vertical offset ZONE,section name N, offset type, horizontal offset, vertical offset [END] transect template is over

Appendix B: Upgrade and install WinEG2007

We sent along a CD and instruction manual with every total station. You can find winMG2007, Microsoft ActiveSync, and driver for Win Total Station on the CD.

1. Install Microsoft ActiveSync and Driver

Caution:

After the installation of Microsoft ActiveSync, you must restart the computer. We suggest that you close all the programs and save your work.
Connect the computer with Win Total Station, and then you will get a message asking for the installation of Drivers. Please download them on the CD attached with total station.

2. Install Microsoft ActiveSync

Put the CD in to CD-ROM drivers and run "Microsoft ActiveSync" The setup wizard will guide you through the process of installation.

After the installation, please restart the computer.
Connect the computer and the total Station with Communication Cable.
Then turn on the total station, once the connection is successful, you will get the
following figure as shown

Browse

Click the browse button, then you can see all the data of this connected total station and, you can also delete, copy, and move the files.

3. Installation of Driver for Win Total Station

If you do not have the driver for the Win total station on your computer the connection will stop and prompt for it, then follow the setup wizard to finish the installation. After the installation, reconnect the computer and the total station.

4. Installation of WinEG2007

After the succeed connection between the computer and the total station, you can setup or upgrade the WinEG2007. Click the "setup.exe" under the folder of WinEG2007 on your CD, you get the following figure.

Click setup as shown in the following figure.;

WinEG2007 installation 2

The setup will cost you 2-5 minutes, then click OK, and finish the installation.

PART II

1 Introduction

WindowsCE operating system Total Station (WINTS for short) has the Graphical User Interface (GUI for short) which makes the Total Station very simple and easy to operate even who has never used a Total Station before. And that's why WINTS is one of the most popular Total Station. EK is the final data processing software of WINTS which has the linetype design, calculation function and data analysis function, it makes the Road Design and Construction Work integrated.
The EK program window is divided into six parts: Menu, Toolbar, Control Panel, Information Output Area, Status Bar and View Area, as shown in Figure 1-1

Figure 1-1: Arrangement of the elements in the EK window
Arrangement of the elements in the EK window: Along the top is the pull-down menu: File, Data, Design, Analysis, Tool, Report, View, Help; Below the Pull-down menu is the Toolbar: Panel, Prompt, Zoom In, Zoom Out, Pan, Window, Zoom all, Previous, Refresh; On the left is the Control Panel: Function, Property, File list; Below the Control Panel is the Information Output Area; On the right is the View Area;

At the bottom is the Status Bar.

2 Functions

2.1 File

Click File in the menu bar. The list of items appears as shown in Figure 2-1:

Figure 2-1: File Menu
Functions of the File Menu:
New: Create a new project file. Input the Project Name, Project Code, Company Info. Etc. and choose the Save Path when creating a new project file. Then click OK.
Open: Open an existing project file (*.prg)
Save: Save a project (*.prg)
Save as: Save a copy of the current file with a new file name. (*.prg)
Coord Input: Import existing coordinate to a project. It has two ways to import coordinate: Manual and Auto. Manual allows users to input coordinates by using keyboard; the coordinate code will be automatically accumulated. Auto allows users to import coordinates automatically by using coordinate files. (*.dat)
Note: For details about *.dat data format please see the "Appendix A: Data Format" Coord Output: Export the coordinate data from current project to a *.dat file.

Export settlement data: Export the Last Settlement Data, Users can specify which coordinate need to export and its saving path, note, etc. The exported file will be saved in *.txt format.
Import settlement data: Import the Former Settlement Data. Users can Import an existing settlement data into a project. (*.txt)
Export to EXCEL: Export the data file into EXCEL.
Print: Print data report, data analysis etc.
Print Preview: Preview the print result.
Print Setup: Setup the printer and papers.
Exit: Close the EK program.

2.2 Data

Click Data in the menu bar. The list of items appears as shown in Figure 2-2:

Figure 2-2: Data Menu
Functions of the Data Menu:
Coord Data: Display the View Coordinate dialog. You can view, modify and delete the coordinate data.
X-Sect: On the right shows the transect data as shown in Figure 2-3. Choose different Occupied Point, the Coordinate, Back Sight Point Coordinate, Total Station Height, Horizontal Angle, Slope Distance and Zenith of the selected Occupied Point will be shown. You can modify and save the information.

Figure 2-3: Transect Data Menu

2.3 Design

Click Design in the menu bar. The list of items appears as shown in Figure 2-4:

Figure 2-4: Design Menu
Functions of the Design Menu:
Road Curve Design: Curve Calculation. It can calculate these linetypes: Single cross plane curve, Convexity plane curve, Tangent base line plane curve, Complex base line plane curve, S type plane curve, Egg type plane curve. The calculation result can be
exported into an EXCEL file. Road Curve Design is corresponding to Route calculation in the control panel. You'll get more details about these commands in later sections.
Chainage Calculation: Based on the Number of the starting Stake, Curve Parameter, Curve Start Point, etc, input the space between the stakes, the program will work out each coordinates of the stakes. The result can be exported into an EXCEL file. Chainage Calculation is same as the Chainage Calculation in the control panel. You'll get more information in later sections.
Road Design: Create new lines or clear the old lines. This function includes Horizontal alignment design, Transect design and Road Calculation, etc. You'll get more information in later sections.

2.4 Analysis

Click Analysis in the menu bar. The list of items appears as shown in Figure 2-5:

Figure 2-5 Analysis Menus
Functions of this Menu:
Cross Section Analysis: Compare the transect design and transect survey result. Select the line which you want analysis first, then choose transect design (display as red line) then choose transect survey result (display as blue line); the compared result can be printed out, as shown in Figure 2-6.

Figure 2-6: Cross Section Analysis
Sedigraph: Display the Settlement Curve, Point Position and Point Movement Curve. Click Sedigraph, the system shows "None Settlement Data imported, import it now?" Click "OK" to show "Open" dialog, User can now import Settlement Data (*.txt format, user can import several data files at the same time). After importing, user can choose Sedigraph, Displacement C and Point variation; the result can be printed out, as shown in Figure 2-6:

Figure 2-6: Sedigraph

On the right the six numbers: $1,2,3,4,5,6$ means six observation points. Figure 2-6 shows six settlement curves at the same time, if user only wants to display one of these curves, just remove the " $\sqrt{ }$ " in front of other numbers.

Choose Displacement C, The View Area will display the first Displacement Curve as default, as shown in Figure 2-7. The result can be printed out.

Figure 2-7: Displacement Curve
Choose Point variation, The View Area will display the first Point Variation Curve as default, as shown in Figure 2-7. The result can be printed out.

Figure 2-8: Point Variation

2.5 Tool

Click Tool in the menu bar. The list of items appears as shown in Figure 2-9:

Figure 2-9: Tool Menu
Functions of the Tool Menu:
COGO: According to some geometry theory and calculating steps, use some known points or lines to calculate unknown point or parameter. This command has pull-down choices, such as Intersection, Resection, Linear Intersection, Angle Intersection, Vertical Distance Point etc. More about these commands will be introduced later.
Coordinate Transformation: Transform current coordinate system to another coordinate system.

2.6 Report

Click Report in the menu bar. The list of items appears as shown in Figure 2-10:

Figure 2-10: Report Menu
Functions of the Tool Menu:
Observation: Display the Observation Report in the View Port, including Name of Survey Station, Collimating Direction, Right and Left Horizontal Angle, Zenith Distance, Slope Distance, etc. The Report will be automatically divided into several pages and can be printed out. As shown in Figure 2-11.

Figure 2-11: Observation Report

Coordinate: Display the Coordinate Report in the View Port, including Point Name, Point Code, NEZ Coordinate, etc. The Report will be automatically divided into several pages and can be printed out. As shown in Figure 2-12.

Figure 2-12: Coordinate Report
Settlement: Display the Settlement Report in the View Port (Import the Settlement Data first). The Settlement Report will be displayed by stages, including Elevation, Settlement of Current period and Accumulated Settlement. The Report will be automatically divided into several pages and every page is divided into four stages. The Report can be printed out, as shown in Figure 2-13.

Figure 2-13: Settlement Report

Displacement: Display the Displacement Report in the View Port (Import the Settlement Data first). The Displacement Report will be displayed by stages, every stage includes Coordinate, Current Displacement and Accumulate Displacement. The Report will be automatically divided into several pages and every page will be divided into four stages. The Report can be printed out, as shown in Figure 2-14.

Figure 2-14: Displacement Report
Setup: Setup the path of Report Template and exported Rows (The Observation Report set 22 rows as default, The Coordinate Report set 45 rows as default), as shown in Figure 2-15. The Report can't be displayed without a right Template Path.

Figure 2-15 Setup

2.7 View

Click View in the menu bar. The list of items appears as shown in Figure 2-16:

Figure 2-16 View Menu

Functions of the View Menu:
Tool Bar: Open or Close the Tool Bar.
Status Bar: Open or Close the Status Prompt.

2.8 Help

Click Help in the menu bar. The list of items appears as shown in Figure 2-17:

Figure 2-17 Help Menu
Functions of the Help Menu:
About EK: You can view information about EK. As shown in Figure 2-18. Click OK to exit.

About UinIS EG Support

WinTS EG support version 1.0

All right reserved [C] 2008

Figure 2-18 About EK
Online Support: Enter the http://www.southsurvey.com to get help.

2.9 Toolbar

Functions of the Tool Bar:

Open or Close the
Control panel

Zoom In

Pan

舁 Zoom all

园 Open or Close the Prompt panel

Zoom Out

Q
 Zoom Window

Previous
『 Refresh

2．10 Control Panel

Functions of the Tool Bar，as shown in Figure 2－19

Figure 2－19 Control Panel
Function：Corresponding to the functions of Design，Analysis，Tool and Report menu．
Property：Check the project information in this panel，double click on the subject which you want to modify．
File list：Check the file information of current project，Click on the file which you want to check，the result will be displayed in the View Area．You＇ll get more information about file format in later sections．

2.11 Information Output Area

Display the operations you have done at different time. As shown in Figure 2-20

Figure 2-19: Information Output Area

3 Road auxiliary computation

3.1 Single intersection plane curve

The calculation of single crosspoint plane curve is based on two or three of Option, Off angle, External spur, Tangent, Tangent vertical dist., Normal vertical dist. to calculate the off angle of curve, external distance, radius of circle curve, circle curve, tangent, length of transition curve and length of curve etc. Interface as shown in figures 3-1.

Figure 3-1 Single crosspoint for curve

Input transition curve length first. If the length is known, input to the dialog box directly; If it is unknown, choose Linearity, after choosing Linearity, textbox of transition curve become gray, according to other known factors the program will calculate the best transition curve length. The following example is supposing that the length of transition curve is known.
Choose external spur in Option and input off angle and external spur, other dialog boxes become gray. The unit of off angle is degree, minute, second, as $16^{\circ} 10^{\prime} 35.1^{\prime \prime}$, input 16.10351; the unit of external spur is meter. After inputting the data, click Calc., the result is displayed, as shown in figure 3-2:

Figure 3-2 Single crosspoint for curve- external spur
Choose Tangent in Option and input off angle and tangent, other dialog boxes become gray. After inputting known data, click Calc., then the result is displayed, as shown in figure 3-3:

Figure 3-3 Single crosspoint for curve-_Tangent
Choose Vertical distance in Option and input Off angle, Tangent vertical dist. and Normal vertical dist., other dialog boxes become gray. After inputting the known data, click Calc., the result is displayed, as shown in figure 3-4:

Figure 3-4 Single crosspoint for curve -_vertical distance
If you want to save the result, please click Export EXCEL, then input the name and save the file. If you want to cancel, click cancel to quit the current interface.

3.2 Convex plane curve

Convexity plane curve is a curve combined by two transition curves which have no circle curve to join up. According to some known conditions such as Option, external spur and tangent, the calculation of Convexity curve is to calculate off angle, tangent, radius of circle curve, transition curve and curve length. The interface of Convexity curve is shown as figure 3-5.

Figure 3-5 Convexity curve
Choose external spur in Option, input Curve off angle and External distance, then click Calc., the result will be displayed, as shown in figure 3-6:

Figure 3-6 Convexity curve-external spur
Choose tangent in Option, input Curve off angle and External distance, then click Calc., the result will be displayed, as shown in figure 3-7:

图 3-7 Convexity curve-_tangent
If you want to save the result, pleas click Export EXCEL, then input the name and save the file. If you want to cancel, click cancel to quit the current interface.

3.3 Baseline tangent plane curve

If the crosspoint can't be set because of the terrain or some obstacles, you can choose crosspoints of two circles to set a reference line and to replace a crosspoint laydown curve, this is called double crosspoints plane curve. If the radius is tangent to reference line, it forms the tangency base line plane curve. According to Curve LS, Off JA, Base line and Off JB, the calculation of tangency base line plane curve calculates out radius of circular curve, length of circular curve, former tangent, later tangent and overall length. The interface of Tangency base line plane curve is as shown in figure 3-8.

Figure 3-8 tangency base line plane curve
Choose Linearity, Curve LS textbox become gray, according to other known factors the program will calculate the best transition curve. Take curve LS for example, input curve LS, off JA, base line, off JB then click Calc., the result will be displayed, as shown in figure 3-9:

图 3-9 tangency base line for curve
To save the result, click Export EXCEL, then input the name and save the file, if not, click Cancel to quit current interface.

3.4 Complex curve

Circle curve is a plane curve which is combined by two circular curves with different radiuses but same direction. According to off JA, former curve, off JB, Later curve, Baseline and Former radius, the calculation of complex curve calculates out radius of later circular curve, length of former circular curve, later circular curve, former tangent, later tangent and overall length. Complex curve is shown as figure 3-10.

Figure 3-10 Complex curve
After inputting off JA, former curve, off JB, Later curve, Baseline and Former radius, click Calc., the result will be displayed. If select Adjust former radius, the best radius of former circle will be calculated, if not, the calculation will use the user input value. As shown in figure 3-11:

图 3-11 Complex curve
If you want to save the result, click Export EXCEL, then input the name and save the file. If not, click Cancel to quit current interface.

3.5 S-shape plane curve

Circle curve is a plane curve which is combined by two circular curves with different radiuses and opposite direction. According to Off JA, Former curve, Off JB, Later curve, Intersection distance and Former radius, the calculation of S curve calculates out radius of later circular curve, length former circular curve, later circular curve, former tangent, later tangent and overall length. S curve is shown as figure 3-12.

Figure 3-12 S curve
Input Off JA, Former curve, Off JB, Later curve, Intersection distance and Former radius then click Calc., the result is displayed. If choose Adjust former radius, the best former circular radius will be calculated, if not, the calculation will use the user input value. As shown in figure 3-13:

Figure 3-13 S curve
If you want to save the result, click Export EXCEL, then input the name and save the file, if not, click Cancel to quit current interface.

3.6 Egg-shape plane curve

Insert a transition curve into two circular curves to make curvature gradually change, this is oviform plane curve. According to Off JA, Former curve, Off JB, Later curve, Baseline and Former radius, the calculation of oviform plane curve calculates out radius of later circular curve, former circular curve length, later circular curve, middle transition curve, former tangent, later tangent and overall length. Oviform for curve is shown as figure 3-14.

Figure 3-14 oviform for curve
Input Off JA, Former curve, off JB, Off JB, Later curve, Baseline and Former radius, then click Calc., the result will be displayed. As shown in figure 3-15:

Figure 3-15 oviform for curve
If you want to save the result, click Export EXCEL, then input the name and save the file, if not, click Cancel to quit current interface.

3.7 Over width \& over height

Widen and superelevation is based on Raw data, Widen and Superelevation to calculate superelevation value of a certain middle stake's outside roadbed, of a road's middle line, or of an inside roadbed. Raw data includes: ZH chainage, HZ chainage, Curved width, SL curve, Curved SL slope\%, Crown slope\%, Shoulder slope\%, Shoulder width and Road width; Widen: Line scale, High order parabola; Superelevation: Centre shaft rotation, Inside axis rotation. The interface is shown as figure 3-16.

Figure 3-16 widen and superelevation
Input Raw data, suppose Widen as High order parabola, Superelevation as Centre shaft rotation, then input Middle chainage, click Calc., the result will be displayed, as shown in figure 3-17:

Figure 3-17 widen and superelevation

If to save the result, click Export EXCEL, then input the name and save the file, if not, click Cancel to quit current interface.

4 Road chainage calculation

4.1 Single intersection plane curve

According to chainage, increase and other known factors, Lay single crosspoint plane curve calculates chainage coordinate. The interface is shown as figure 4-1.

Figure 4-1 lay single crosspoint plane curve
Chainage setup: User can setup chainage by intersection point chainage or start point chainage; Add integer: According to the start point and increasing space to insert chainage, the value of chainage is an integer.
Para. setup: User must input radius, offA., F curve and L curve of the curve. If you want to calculate border, please choose border to activate L off and R off dialog box and input the value. If you want to calculate elevation, please choose Height to
activate L height and R height dialog box as well as H.Para. button, click H.Para. as shown in figure 4-2.

Figure 4-2 H.Para.
First user has to input information of start point and end point of this segment. If the beginning segment is a line, input the chainage and elevation of the start and end point of this straightline. If the beginning is a curve, input chainage and elevation of start point, and chainage, radius, former longitudinal slope $\%$ and later longitudinal slope $\%$ of end point, then click add para. Del all is used to delete all information in the dialog box on the right. If you want to modify the linetype of a segment, select the listed items of this segment in the list box on the right, click modify, after modifying click OK . After adding all factors, click Yes to quit.
NOTE: In parameter setup, value for slope can be plus or minus, plus to ascend, minus to descend.
Known factors: known section start point, known section end point, known section azimuth between start point and section point and known section azimuth between section point and end point etc. User can input coordinates by manual or automatic. Click pick, as shown in figure 4-3, double click to choose, after that browse coordinate close.

坐标䂭婜				\times
点号	点名	N	E	
1	PT1	0.000	0.000	
2	PT2	90.000	90.000	
3	PT3	37.495	64.943	
4	PT4	0.000	76.454	
5	PT5	－13．274	75.283	
6	PT6	－23．257	63.899	
7	PT7	－40．000	69.282	
8	PT8	－49．783	44.825	
9	PT9	－104．199	113.980	
10	PT10	－55．493	122.616	
11	PT11	－77．246	105.938	
12	PT12	－98． 743	74.013	
13	PT13	－125．665	40.585	
14	PT14	－131．665	96.263	
15	PT15	－180．026	109.787	
16	PT16	－192．450	78.909	
17	PT17	65.000	78.000	
18	PT18	65.000	78.000	
19	PT19	65.000	78.000	
\leqslant				＞

Figure 4－3 browse coordinate
Save para．：save all the parameter to the file，click save to save，the default name is ＂Untitled＂and the format is＊txt；If you want to use the same parameter click pick para．to open the file．
Note：In parameter setup，value for slope can be plus or minus，plus for right in forward direction，minus for left in forward direction．
After setting parameter，click Calc．，the result is displayed in dialog box on the right， including curve factor，chainage and coordinate of key points（ZH，HY，QZ，YH，HZ） and of each inserted chainage．This software has Add chainage function，input the chainage to be added Add，then calculated information of of the added chainage will be displayed in the list box．As shown in figure 4－4．

Export EXCEL：export result to EXCEL．

Cancel：Quit the dialog box．

Figure 4-4 Lay single crosspoint plane curve

4.2 Baseline tangent plane curve

According to Chainage, Increase and other known factors, this function can calculate chainage coordinate. The interface is as follow:.

Baseline tangent plane curve

Chainage setup: User can setup chainage by Intersection point chainage or Start point Chainage;
Add integer: Make the value of start point chainage, insert point chainage and increment to be integral.
Para. setup: You have to input curve Radius, F offA, L offA and Curve L. If you want to calculate border, please choose Border to activate L off and R off dialog box and input the value. If you want to calculate elevation, please choose Height to activate L height and R height dialog box, at the same time, H.para. also is activated. Click H.para.

Known factor, Save pare., Pick para., Calc., Add, Export EXCEL are same as lay single intersection plane curve. As following figure:

Baseline tangent plane curve
You can move scroll bar up, down, left or right to view the information, click Cancel to escape.

4.3 Complex curve

According to chainage, increase and other known factors, this function can calculate chainage coordinate. Interface is as following figure:

Complex curve
The differences between complex curve and single intersection plane curve are F radius, F offA, L radius, L offA, F curve, L curve must be input in Para. setup. Others are same as single intersection plane curve. Example for calculation with complex curve is as following graph:
PS: Former radius and later radius must be the same plus-minus.

Complex curve

You can move scroll bar up, down, left and right to view the information, click Cancel to quite.

4.4 S-shape plane curve

According to Chainage, Increase and other known factor, this function calculates chainage coordinate. Interface is as following figure:

S-shape plane curve
From interface S -shape plane curve is almost the same as single intersection plane curve, but a little different, the former radius and later radius must be opposite. S-shape plane curve is as follows:

S-shape plane curve

User can move scroll bar to up, down, left and right to go over the information, click Cancel to escape.

4.5 Egg-shape plane curve

According to Chainage, increase and other known factor, this function can calculate chainage coordinate. Interface is as following figure:

Egg-shape plane curve
The difference between Egg-shape plane curve and single intersection plane curve are that F radius, FoffA, L radius, L offA, F curve, L curve must be input in Para. setup. Others are same as single intersection plane curve, egg-shape plane curve is as following figure:

Egg-shape plane curve

You can move scroll bar to up, down, left and right to go over the information, click Cancel to escape.
4.6 Vertical curve

According to Elevation, Radius, F slope\%, L slope\% and Increase of Start point or Knick point to calculate chainage, HD to start point, slope elevation and vertical curve elevation..

Add integer: Make the value of start point chainage, chainage, increment to be in tegral. Interface is as following figure:

Vertical curve
After input parameter, click Calc., result lists in the list box. If you want to calculate chainage, input the value in Chainage, and then click Add. Shown as following figure:
PS: The unit for former slope and later slope is " $\%$ ", for example, former slope is 0.01%, so input 0.01 . Plus for ascend, minus for descend.

Vertical curve

User can move scroll bar to up, down, left and right to go over the information, click Cancel to quite.

5 Road theory design

Click Design - Road Design Add, it displays "Add road" figure:

Add road
Take Road name as "zhongshan road", choose vertical in V-sect type, click "Yes", "zhongshan road" display in the subdirectory of Road theory design, and as follows figure 5-2. If there is no road name, system prompts you to input the name, click Cancel to quite. If already exist road name, double click road theory design, chose road will be open.

Road theory design

5.1 Start point

Start point can be input manually or by clicking ..., Start chainage must be input manually. Click save to save, after inputting.

PS: No matter manual input or automatic input, you must click "Save" after input. The default value: $\mathrm{N}=0 ; \mathrm{E}=0 ; \mathrm{Z}=0 ;$ start chainage $=0$.

5.2 Horizontal alignment

Horizontal alignment elements contain: chainage of intersection, elevation ,length(radius).

Add: Add more of blank line used for inputting horizon alignment elements.
Insert: Insert blank line into appointed position, used for inputting horizon alignment elements.
Delete: Delete horizon alignment elements at appointed position.
Edit: Modify the appointed horizontal alignment elements.
Click Add, then an interface will pop up. Choose line in horizon alignment element. As follows figure 5-3. In "input line", length: 712.017 m , azimuth: 1.4916 (degree), click Yes to save the data. Click Cancel to quite.

Choose transition curve in "horizon alignment element", figure 5-4 "input transition curve", Radius: 5500 m , length: 700 m , choose left in Rotate, click Yes to save, click Cancel to escape.

Input transition curve
Choose circle curve in "horizon alignment element", figure 5-5 "input circle curve", circle radius: 5500 m , circle length: 700 m , choose left in Rotate, click Yes to save, click Cancel to quite

Input circle curve
Choose point in "horizon alignment element", figure 5-6 "input point". Two ways to input point element manual and Radius: $100 \mathrm{~m}, \mathrm{~F}$ curve length: $70 \mathrm{~m}, \mathrm{~L}$ curve length: 70 m . click Yes to save the data. Click cancel to quite.

Input point
4 kinds of horizontal element are showed in figure "Horizon alignment data". When choose one element in the list box, it shows chainage and azimuth, and chosen curve with red line at the right side. You can click Edit, Del, Insert to edit the data.

Horizontal alignment data

5.3 Vertical alignment

After completing adding information of horizontal alignment elements, you can start
to input "Vertical alignment" information. Click Vertical alignment button, graph shown as below:

Vertical alignment
Vertical alignment elements contain: chainage of intersection, elevation, length (radius).
Add: Add more of blank line used for inputting vertical alignment elements.
Insert: Insert blank line into appointed position, used for inputting vertical alignment elements.
Delete: Delete vertical alignment elements at appointed position.
Save: Record the input vertical alignment elements. After modifying vertical alignment elements, please save before starting other process.
Click Add, then a blank line exists in the list. Input vertical alignment element data, according to the list below.

Chainage	Elev.	Length
13567.393	49.061	1000
18200	37.9192	600
19346.7	33.3893	700
21447.5	31.2885	1000

Check the inputting and click Save. And then defining vertical alignment is completed, as graph 5-9 shown:

Vertical alignment element data

5.4 Transect

After completing adding information of vertical alignment elements, you can start to input "Transect" information. Click "Transect" button, graph will show as below:

Transect information

Add: Add more of blank lines used for inputting transect information.
Insert: Insert blank lines into appointed position, used for inputting transect information.
Delete: Delete transects information at appointed position.
Save: Record the input transects information. After modifying transect information, please save before starting other process.
Templet: Add new template, view original template or modify existed template. Make sure that checking that if the template is existed or not before editing. Define new template if there is no template.
Click Templet, graph as below will show. Template data include: Section name, H offset, slope $\%$, V offset, offset type.

New: Create new transect template, according to input template name.
Delete: Delete the template chose or has input name.
Save: Save new or modified transect template data.
Add section: Add new section of transect template.
Delete section: Delete chose section of transect template.
Input at template Name, set, then click Add section, graph 5-12 will show as below. Input section name (Default Z 1), rest is empty. Input by sequence horizontal offset: 12, vertical offset (Slope \%): 0.3, click Upward button, button will switch from "Upward",
"Downward" and "Gradient\%".

Add section

Click Yes, then Z1 section will be added, click X to cancel adding section. Repeat the steps above and add the new sections as below: Section name, Z2, Horizontal offset, 3, Vertical offset, 2.5, Offset type, down. Section name, Z3, Horizontal offset, 5, Vertical offset, 0, Offset type, up. Section name, Z4, Horizontal offset, 7, Vertical offset, 1.2, Offset type, slope\%. Click Save at last to complete the data inputting for template name. That will show like graph below. Click X to go back to transect main interface.

Inputting data of transect template
In interface "transect information", click Add, graph will show as below. Click once only when you need to input chainage.

Add transect
Click the blank line on left template or right template, interface for choosing transect template will appear, as shown on graph below:

Choosing transect template
Select "Set" template from the template name list in "Choosing transect template" interface. Interface after completing data will show like this graph below "Transect template data". Click Save to save the transect data.

Transect template data
Caution: Template of leftside and rightside can be different and also can be same. If they are different, choose different templates in "Choosing transect template" interface.

5.5 Calculate road point

After completing adding the transect information, we can go to calculation of road points, click "Calculate road point" button, graph will show as below:

Calculate road point
Road point include: Middle Pt, Left Pt, Right Pt and transition point, etc.

Choose Middle Pt，Right Pt，input the distance to middle line，5，unit is meter；Left Pt， input distance to middle line，7，unit is meter，Transition Pt，input the distance between chainage，100，unit is meter．Click Calc．，system will calculate out that 100 road points， between which the distance is 100 ，all of which are on road middle line．Results will be showed as below：
Caution：Distance between chainage is less than 10 meter．

道咯坐䏡点					\times
位置	桩号	N	E	Z	ヘ
C＊QD	13567.393	480595.034	4410862.380	0.000	
C＊LH	14279.410	481306.691	4410885． 007	47.349	
C＊HY	14979.410	482006.526	4410892.407	45.665	
C＊LY	14979.410	482006.526	4410892.407	45． 665	
C＊QZ	16229.410	483240.660	4410711.576	42.659	
C＊YZ	17479.410	484402.312	4410257.319	39.652	
$\mathrm{C} * \mathrm{YH}$	17479.410	484402.312	4410257.319	39.652	
C＊HZ	18179.410	485006.585	4409904． 221	38.069	
C＊0． 000	13567． 393	480595． 034	4410862.380	0.000	
C＊0． 000	13867． 393	480894． 882	4410871.914	48.291	
C＊0． 000	14167． 393	481194． 730	4410881.447	47.618	
C＊0． 000	14467． 393	481494． 588	4410890.694	46.896	
C＊0． 000	14767． 393	481794．541	4410895．486	46.175	
C＊0． 000	15067． 393	482094．438	4410888.901	45.453	
C＊0． 000	15367． 393	482393.555	4410866.389	44.732	
C＊0． 000	15667． 393	482690.999	4410827.602	44.010	
C＊0． 000	15967． 393	482985.887	4410772.657	43.289	
「＊п กกก	1ヶ2RT 89\％	483277341	AS1ח7ก1 717	49 5¢7	v

Road coordinate points

6 COGO

In EK software，Cogo contains forward intersection，resection，linear intersection， angle intersection，radiate，foot of perpendicular，distance line，lines intersection，point on line，symmetrical point，etc eleven coordinate calculating function．
Each coordinate calculating function has simple picture to instruct．System supplies manually inputting and selecting from coordinate list two types methods to input point number at every place where to input point number．Software will notice you，if there is no intersection．

6．1 Forward intersection

According to forward intersection，we have point 1，point 2，both of them are known
points. Set occupation at these two points and get value of $\angle 1, \angle 2$, to calculate unknown point P . The mathematical model as below:

$$
\begin{aligned}
& \mathrm{xF}=\frac{\mathrm{x} 1 \times \operatorname{ctg} \angle 2+\mathrm{x} 2 \times \operatorname{ctg} \angle 1-\mathrm{y} 1+\mathrm{y} 2}{\mathrm{ctg} \angle 1+\operatorname{ctg} \angle 2} \\
& \mathrm{yP}=\frac{\mathrm{y} 1 \times \operatorname{ctg} \angle 2+\mathrm{y} 2 \times \operatorname{ctg} \angle 1-\mathrm{xL}+\mathrm{x} 2}{\operatorname{ctg} \angle 1+\operatorname{ctg} \angle 2 .}
\end{aligned}
$$

As shown in graph 6-1 "Forward intersection", Point A, B are known points, you can input manually, and also can select them from coordinates list.

Forward intersection

Suppose that coordinate of A is 0,0 , coordinate of B is 90,90 , both of $\alpha, ~ \beta$ are 45 . Click Calc. button, calculation results will display in list, as shown below with graph 6-2:

Forward intersection calculation
Click Export EXCEL, name the saved file and click Yes, calculation results will be saved into EXCEL file.

6.2 Resection

In resection, points A, B, C are known, angle α, β can be measured, with all the conditions above to calculate the coordinate of point P. Point P can not appear on the circum circle of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or near it.
Suppose that coordinate of point A is 0,0 , point B is 90,90 , point C is $37.495,64.9433$, $\alpha, ~ \beta$ are $12.3451,34.5543$ respectively. Click Calc. button, results will show in list. Shown as graph 6-3.

Graph 6-3 Resection calculation
Click Export EXCEL, name the saved file and click Yes, calculation results will be saved into EXCEL file.

6.3 Linear intersection

With Linear intersection, you should set station at point A, B both of which are known, with all the conditions above to calculate the coordinate of point P .
In raw data input, suppose that coordinate A is $0,0, \mathrm{~B}$ is 90.90 , length of PA is 90 meters, length of PB is 90 meters. Click Calc. button, results will show in the list, as shown below:

Caution: In Linear intersection, the intersection point will be the left side of forwarding direction.

Graph 6-4 Linear intersection calculation

Click Export EXCEL, name the saved file and click Yes, calculation results will be saved into EXCEL file.

6.4 Angle intersection

Angle intersection is to use known directions of two lines to determine the unknown coordinate of point. In practical surveying, looking for the place for setting station is always a problem. This function is made to deal with this kind of problem. Known coordinates of point A , point B , point P is a intersection of line AB and a line that cross through station, with all the conditions above to get the coordinate of point P .
In the process of raw data inputting, suppose that coordinate of station is $0,76.4544$. Coordinate of backsight is $37.4950,64.9433$. Coordinate of point A is 0,0 . Point B is $90,90 . \alpha$ is 36.2415 , click Calc., results will show in the below list. As graph 6-5 shown:

Graph 6-5 Angle intersection calculation
Click Export EXCEL, name the saved file and click Yes, calculation results will be saved into EXCEL file.

6.5 Vertical distance point

Point A and point B are knew, the distance from point B to foot of it is S 1 and the distance from point P to the line crosses through point A and B is $S 2$, with all the conditions above to calculate the coordinate of point P .
Suppose that coordinate of point A is $0,0, \mathrm{~B}$ is $90,90, \mathrm{~S} 1$ is 47.5 meters, S 2 is 36.3 meters, click Calc. button, results will show in the list:

Graph 6－6 Vertical distance point calculation
Click Export EXCEL，name the saved file and click Yes，calculation results will be saved into EXCEL file．

6．6 Radiation

点 A ，点 B 为已知控制点，在点 A 设站，以 B 点为起始方向，观测了水平角 α 和距离 S ，计算 P 点的坐标。

在原始数据输入中假设 A 点坐标为 0,$0 ; B$ 点坐标为 90,$90 ; \alpha$ 为 36.4215 ，度分秒；距离为 73.3 米，点击计算按钮，计算结果显示在列表框中，如图 6－7 极坐标计算：

图6－7 极坐标计算
Click Export EXCEL，name the saved file and click Yes，calculation results will be saved into EXCEL file．

6．7 Foot of perpendicular

Point A，B，C are known points，with these conditions to calculate the foot P of the line which connects Point C and line AB in shortest distance．

Suppose that coordinate of point A is $0,0, \mathrm{~B}$ is $90,90, \mathrm{C}$ is $37.495,64.943$ ，click Calc．， results will show in the list below：

Click Export EXCEL, name the saved file and click Yes, calculation results will be saved into EXCEL file.

6.8 Lines intersection

Point $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are known points, with these conditions to calculate the intersection P of line $A B$ and line $C D$.
Suppose that coordinate of point A is $0,0, \mathrm{~B}$ is $90,90, \mathrm{C}$ is $37.495,64.943$, D is 0 , 76.454, click Calc., results will show in the list below:

Caution: Each line points you input will be check by system automatically to see that if the lines you input are parallel, if they are, system will notice you that "calculating failed, please check your data again".

Graph 6-9 Lines intersection
Click Export EXCEL, name the saved file and click Yes, calculation results will be saved into EXCEL file.

6.9 Symmetry point

Point $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are known points, line AB is a known line, to calculate the symmetrical point of C.
Suppose that coordinate of point A is $0,0, \mathrm{~B}$ is $90,90, \mathrm{C}$ is $37.495,64.943$, click Calc., results will show in the list below:

Graph 6-10 Symmetrical point
Click Export EXCEL, name the saved file and click Yes, calculation results will be saved into EXCEL file.

6.10 Point on line

Point A, B are known points, line $A B$ is a known line, point p is on line $A B$ or on the extension line of line AB . S is the distance between point B and point P , to calculate the coordinate of point P .
Suppose that coordinate of point A is 90,90 , B is $37.495,64.9433$, Sbp is 76.3 meters, click Calc., results will show in the list below:

Graph 6-11 Point on line
Click Export EXCEL, name the saved file and click Yes, calculation results will be saved into EXCEL file.

6.11 Distance line

Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are known points, line AB is known line, distance S is knew, to calculate point located on line AB and from which to C , the distance is S .
Suppose that coordinate of point A is $0,0, \mathrm{~B}$ is $90,90, \mathrm{C}$ is $37.495,64.943$, Scp is 43.27 meters, click Calc., results will show in the list below:

Caution: According to the limitation of known conditions, this method would produce two intersections, our software will judge by choosing the one which is farthest from first point. When operator needs to get another point, you can change the sequence of point A and B .

Graph 6-12 Distance line

6.12 Coordinate transformation

Coordinate transformation is to transform the known coordinate to other kinds of coordinate system by moving, rotating, according to some known transformation parameters. Main interface of coordinate transformation is as graph 6-13 below:

Graph 6-13 Coordinate transformation

Transform: Pan, Rotation and Parallel rotation

Parameter: When transform type is Pan, parameter are azimuth and distance. When transform type is rotation, parameter are rotation angle and basic point. When transform type is parallel rotation, parameter is rotation angle and origin point.
Pick: Open coordinate view window to add coordinates.
Add: Add the coordinates to list as the data before transforming.
Batch add: add all the data recorded in system to list.
Batch import: Open appointed files and add all the data in the file to list.
Delete list: Clean out the data existed in list.
Export EXCEL: Save the results into EXCEL file.
Transform: Transform according to raw data and transformation parameter.
Cancel: Quit dialog box of coordinate transformation
For example, select "Parallel rotation" from transform type list. Corresponding parameter will change to rotating angle, origin $\triangle X$, origin $\triangle Y$. Input 35.2457 as rotating angle, 153.24 as origin $\triangle \mathrm{X}, 72.51$ as origin $\triangle \mathrm{Y}$. Click Batch add to add the coordinate file to list, then click Transform button, results will display in list of Results list box. Shown as below:

Graph 6-14 Coordinate transformation-Parallel rotation

7 System file

Click File option in control area, "Project file list" will show as graph 7-1 below:

Graph 7-1 Project file list
The file suffix of which is *.coo, is coordinate file. That includes point No., point name and coordinates X, Y, Z. While you select "atest.coo" file, all the coordinate file will display in the right area. Shown as graph below:

Graph 7-2 *coo file
Customer can modify the coordinates when the file is open. Click twice the data you need to modify, then you will be allowed to edit. Notice that Pt No. and Pt name can not be modified. Click Save after modifying.

The file suffix of which is *.daw is used for saving information of ground object. While you select "atest.daw" file, all the information included in the file can be displayed at right area of window. You can check the information shown as below:

Graph 7-3*daw file
The file suffix of which is *.prj is graphics file. While you select "atest.prj" file, graph will display at right area of window. Shown as below:

Graph 7-3*prj file
The file suffix of which is *.prj is used for recording raw data which includes information of station point, backsight point and horizontal angle, zenith, SD, prism height of each observing point. While you select "atest.raw" file, file contents will display at right area of the window. Customer can view the information as below:

Graph 7-4*.raw file
The file suffix of which is *.rod is used for recording information of horizontal alignment, vertical alignment and transect template. While you select "atest.rod" file, file contents will display at right area of window. Customer can view the information as below:

Graph 7-5*.rod file
File suffix which is *.sct is main information of recorded station, orientation point and sight point. While you select "atest.sct" file, file contents will display in right area. The information you can view is as below:

Graph 7-6*.sct file

Appendix A:File forms of EK

*.dat Coordinate data file

Form of coordinate data file as below:
Point 1 name,Point 1 code,Point 1 Y (East) coordinate,Point 1 X (North) coordinate,Point 1 Elevation

Point N name,Point N code,Point N Y (East) coordinate,Point N X (North) coordinate,Point N Elevation

Instruction:
Each line in file indicates one point; Unit of coordinate $\mathrm{Y}, \mathrm{X}, \mathrm{Z}$ of every point is meter; comma can not be contained in code.
*.rod Road data file
Data file form is as below:
[HEADER]
ROADNAME,road1
VALTYPE,0
[END]

[ALIGN]

START,300.000,488342.493,2552134.180
STRAIGHT,30.0000,500.00000000000
ARC,-2000.000,500.000000
SPIRAL,-2500.000,300.000000
Pt,489996.699,2558932.226,3500.000,300.000,300.000
[END]
[VLIGN]
400.000,40.000,60.000
500.000,35.000,50.000
600.000,25.000,70.000
$700.000,30.000,60.000$
[END]
[SECT]
400,sect1,sect1
[END]
[TEMPLATE]
TEMPLATENAME,sect1,3
ZONE,Z1,1,12.000,0.300
ZONE,Z2,1,3.000,2.500
ZONE,Z3,0,5.000,0.000
[END]

Instruction:
[HEADER]Road information
ROADNAME, Road name
VALTYPE, Vertical curve type (0 ,vertical curve; 1 ,erect curve)
[END]Road information is over

[ALIGN]Horizontal alignment

START, Start chainage,East coordinate,North coordinate (Only one start point data is allowed)

STRAIGHT, azimuth, length (straight segment)
ARC, radius, arc length (Arc section)
SPIRAL, radius, transition length (transition curve section)
Pt, coordinate east,coordinate north,radius,last transition length,next transition length (point)
[END]Horizontal alignment is over
[VLIGN] vertical alignment
chainage, elevation (gradient),length
[END] vertical alignment is over
[SECT] transect
chainage, transect model name of road leftside, transect model name of road rightside [END] transect is over
[TEMPLATE] transect template
TEMPLATENAME, template name, section number
ZONE, section name 1,offset type,horizontal offset,vertical offset

ZONE, section name N,offset type,horizontal offset, vertical offset [END] transect template is over

